传统的DC/DC变换器一般采用模拟控制方式,它具有体积小,功耗低等优点,但易受噪声影响。而数字控制的DC/DC变换器对工艺参数和环境不敏感、控制算法可通过编程实现、易于集成,且能大大缩短产品的开发周期。
1 DC/DC变换器结构
数字控制器主要由模数转换器(ADC)、数字补偿器(Digital Compensator)和数字脉冲宽度调制器(DPWM)组成。一种常用的数字控制器如图1所示。主电路输出电压与基准电压经ADC进行比较并转换为相应的数字误差信号,数字补偿器则根据误差进行补偿得到给定数字信号。经DPWM转换成时间信号,控制主电路开关通断。
2 延迟线ADC
标准CMOS工艺下一个逻辑门延迟td与电源电压VDD叻有这样一个关系
其中,K是一个与器件和工艺有关的常数,Vth是MOS器件的阈值电压。当VDD大于Vth时,td可看作与VDD成反比。
延迟线ADC由延迟链、寄存器组和译码电路组成,结构如图2所示。一串延迟单元组成延迟链。一种可行的延迟单元的结构如图3所示。它由一个反相器与一个或非门级联得到。每个延迟单元都有一个输入端,一个复位端和一个输出端。
给定一个开始信号AD_Stan,经一定时间间隔后产生一个采样脉冲信号sample,作为D触发器的控制信号。在采样信号有效时对D触发器的输入信号进行锁存,将D触发器的输出信号送至译码电路得到最后的误差信号。图4是延迟线ADC的时序图,假设图2中n=8。在采样信号有效时,AD_Start信号正好传到第5个延迟单元,于是q1~q5输出为1,q6~q8输出为0。采样电压越大,延迟时间td越小,信号传播得越快,输出的温度计码中的1的个数越多。译码电路再将温度计码转换为所需要的二进制码。延迟线ADC即通过输入电源对延迟链供电,根据延迟链延迟时间的大小来确定输入的大小。
3 差分延迟线ADC
3.1 差分延迟线ADC结构分析
延迟线ADC结构简单,功耗小,但易受工艺和温度环境影响,且采样信号需外部产生,增加了电路的复杂性,而且采样信号的延迟大小会影响ADC量化电平的大小,使得系统输出不易稳定。
差分延迟线结构是对延迟线结构的一种改进,结构图如图5所示。差分延迟线ADC由两条全同的延迟链组成,主延迟链(Primary delay-line)和参考延迟链(Reference delay-line)。参考延迟链可经主延迟链复制而来。两条差分延迟链共用一个启动信号AD_Start,使两条延迟链的工作状态完全相同。差分延迟链的两个输入分别是采样电压Vsense和基准。
电压Vref,Vsense须小于Vref,根据电压越大延迟越小的原理,参考延迟链先于主延迟链传播完,将与主延迟链相连的D触发器打开,对主延迟链上的Vsense进行采样。这样就实现了将采样电压与基准电压作比较,再通过译码电路得到系统需要的数字误差信号。
差分延迟线ADC的控制信号在内部产生,进一步简化了电路结构。采用差分形式输入,使得采样电压和基准电压同时受到温度和工艺偏差的影响,减少主延迟链的延时偏差。
3.2 差分延迟线ADC建模
设延迟链中的延迟单元个数为N,延迟时间td是VDD的函数:td=td(VDD),则有
即转换时间Tc是分辨率Vq,延迟时间td以及延迟函数的斜率的函数。
图6为0.13μm CMOS工艺下单个延迟单元与VDD的关系曲线。
4 设计方法和仿真结果
延迟单元对精度要求较高,采用全定制设计,而译码电路对精度要求较低,采用基于标准库单元设计,整体电路使用Hsim进行数模混合仿真。
设计时,基准电压为1.5V,工作频率是1.5MHz,输入电压从0.7~1.5V线性上升,输出为译码后的结果,即6位数字信号e。Vsense每增加或减少12.5mV,e增加或减少“1”,但e的最大值是63。图7为0.13μm CMOS工艺下差分延迟线ADC的输入输出曲线,可以看出,差分延迟线ADC的输出没有明显偏移,零输入对应零输出,线性度良好。
5 结束语
该差分延迟线ADC电路结构简单,不需要外部电路产生控制信号,可抵消部分工艺偏差。该ADC转换速率很快,功耗低,适合应用在高频数字DC/DC变换器中。
上一篇:采用ET技术的RF收发器减少射频电路功耗
下一篇:数控直流稳压电源中调节电压值的新方案
推荐阅读最新更新时间:2023-10-17 15:12
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC