电压关断型缓冲电路分析及设计方法

最新更新时间:2013-03-07来源: EDN关键字:电压关断型  缓冲电路 手机看文章 扫描二维码
随时随地手机看文章

  引言

  近年来Snubber电路有了较大的发展, 但目前其性能并未得到合理优化,其应用也不尽如人意。这主要是由于现场应用人员并未十分重视RCD Snubber的基本类型、相关特性及使用场合的限制,也不重视RCD Snubber电路的理论分析,只是凭经验和实际工程调试,这在一定程度上降低了工程设计的工作效率。

基于上述原因,本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。

  RCD Snubber电路的基本类型及其工作原理

  RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。

  为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。

  图1 常用的RCD Snubber电路

  抑制电压上升率模式

  对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber

  如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。

  关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。

  可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。

  电压钳位模式

  RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。

  以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。

  图2反激式变换器的Clamp电路

  会发生高频谐振而使开关管DS两端电压升高,但是由于漏感产生的VSPIKE的能量能够及时转移到CC中,而使CC的端电压从次级反射电压VOR上升到最大值(VOR+VSPIKE);当开关管导通时,CC通过电阻RC放电,这样在下个周期开关管关断前,能够使得CC的端电压从(VOR+VSPIKE)恢复到VOR。这样,只要能够合理设置时间常数,就能保证在一个周期内将漏感转移到CC中的能量释放完毕。

  CC端电压在理想情况下基本上是恒定的,仅在充、放电时存在一个变化量VSPIKE。而漏感的电流始终和初级电流串联的,所以漏感电流的下降过程就是次级电流的上升过程。而漏感电流的下降过程是由RCD Clamp电路CC上的压降和反射电压VOR的差值决定的,差值越大电流下降就越快,能量传输也越快,因而效率会明显提高。所以,此时开关管DS的电压为(+VOR+VSPIKE)。这样漏感两端的电压将为VSPIKE(一般可取10V~20V),如图3所示。由法拉第定律可知因漏感引起的初、次级能量传输的延迟时间为: (8)其中,IP为在开关管关断时电感的峰值电流。

图3 关断瞬间开关管DS电压与其电流波形

  如果电路参数选择适当,RCD Clamp电路两端的电压尖峰将通过CC来吸收,并且需要达到能量平衡,因漏感而产生的能量将完全消耗在RC上。 

  实验结果分析

  实验中采用一个输出功率为3.5W的反激式开关电源样机,其主要参数如下:
PO=3.5W;VIN=220VAC;fs=43kHz;IP=0.1A;LP=6.63mH ;=871.3mH;NP=75;NS=12;次级对初级的反射电压,取VOR=80V。另取VSPIKE=20V;开关管选用SMP4N100,其tr=18ns。

  经计算得出:

  CS=2.143pF,RS=4.2k健?由于几pF的电容不容易得到,故可以用10个22pF的瓷介电容串联来等效代用。有RCD Snubber电容时,开关管两端的电压VDS波形见图4;无Snubber电容的VDS波形见图5。

  图4 有Clamp无Snubber的波形

  图5 Clamp+Snubber(2.2pF+4.2k)的波形

  由图5可以看出,加上合适的Snubber电路后,VDS的上升率有所减缓,因而可以转移开关管的关断损耗至Snubber电路的RS。

  值得注意的是,由于实验电源的功率很小,因而Snubber电路的电容数值很小以至作用不大。但如果用在大功率电路中,电容的数值会较大,因而效果将更为明显。

  RCD Clamp电路参数选择及相关波形图

  经计算得出:CC=815.87pF;RC=300.19k?实际中选取CC=1nF,Rc分别选取270k郊?00k剑⑶曳直鹪谟蠷CD Clamp及无RCD Clamp下对比两者的实际效果。

  图6为不加Clamp电路时开关管电压波形VDS,其端电压已超过600V;图7为Clamp电路中选取RC=270k剑珻C=1nF,端电压为474V。

  图6  无Clamp 时的波形

  图7 Clamp:270k+1nF的波形

  可见,采用Clamp电路并选取利用公式计算出的数值,可使开关管端电压VDS有效地钳位到合适的电压水平,为实际所用。

  结语

  通过适当选取RCD Snubber 的电路参数,可有效地改善开关管的开关轨迹,降低其关断电压的上升速率,可以转移开关管的损耗至Snubber电路的电阻上,提高开关管的工作可靠性,同时改善电路的高频电磁干扰,但Snubber电路基本上不会提高整机的工作效率。

  反激式变换器在开关管关断时,存在很高的电压尖峰,通过适当选取RCD Clamp的电路参数,可以对开关管实现电压钳位,避免因过高的电压尖峰使开关管受损。但是,因Clamp电路消耗了变压器漏感上的能量,从而在一定程度上影响了整机的工作效率。

  参考文献

  1 李爱文,张承慧. 现代逆变技术及其应用. 北京. 科学出版社. 2002

关键字:电压关断型  缓冲电路 编辑:探路者 引用地址:电压关断型缓冲电路分析及设计方法

上一篇:服务器电源技术及标准介绍
下一篇:电源转换器的电磁兼容性

推荐阅读最新更新时间:2023-10-17 15:14

基于MOSFET与变压器原边串联的RCD缓冲电路选择
对于MOSFET,工作时候与变压器原边串联,由于变压器漏感和MOSFET较大的开通电容的影响,使得其关断时候会承受一个很高的电压尖峰。 为了减小这个尖峰,我们使用RCD缓冲电路。如图: RCD电路有很多类型:纯粹的RCD,带回馈电感的RCD,带回馈变压器的RCD。后边两种都是为了将消耗在R上的能量转化为电磁能量回馈电网减小损耗。 RCD工作时候,由于钎位关系将开关管两端电压限制在2Vdc,C使得开关管集电极或者漏级电压上升速度减缓。之后C通过电阻R放电,或者将能量转移到电感或变压器中最终回馈电网。 C的取值需要足够的大,使得开关管电压上升速度足够缓慢,保证开关管不受到冲击。而C因为损耗的原因也不能太大,而R的大小没有特别要
[电源管理]
基于MOSFET与变压器原边串联的RCD<font color='red'>缓冲</font><font color='red'>电路</font>选择
技术文章—多图解析开关电源中一切缓冲吸收电路
基本拓扑电路上一般没有吸收缓冲电路,实际电路上一般有吸收缓冲电路,吸收与缓冲是工程需要,不是拓扑需要。 吸收与缓冲的功效 防止器件损坏,吸收防止电压击穿,缓冲防止电流击穿 使功率器件远离危险工作区,从而提高可靠性 降低(开关)器件损耗,或者实现某种程度的关软开 降低di/dt和dv/dt,降低振铃,改善EMI品质 提高效率(提高效率是可能的,但弄不好也可能降低效率) 也就是说,防止器件损坏只是吸收与缓冲的功效之一,其他功效也是很有价值的。 吸收 吸收是对电压尖峰而言。 电压尖峰的成因 : 电压尖峰是电感续流引起的。 引起电压尖峰的电感可能是:变压器
[电源管理]
技术文章—多图解析开关电源中一切<font color='red'>缓冲</font>吸收<font color='red'>电路</font>
电压关断缓冲器(RCD Snubber)的基本类型及其工
本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。    RCD Snubber电路的基本类型及其工作原理   RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。   为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。      图1 常用的RCD Snubber电路    抑制电压上升率模式   对于功
[电源管理]
<font color='red'>电压</font><font color='red'>关断</font><font color='red'>型</font><font color='red'>缓冲</font>器(RCD Snubber)的基本类型及其工
基于以太网的光无线通信系统的设计与实现
  以光波为信息载体进行光通信的历史由来已久,大气激光通信是以大气作为传输介质的通信,是激光出现后最先研制的一种通信方式。由于它具有传输距离远、频带宽、发射天线小、保密性好及抗电磁干扰等优点,越来越受到关注,应用也日渐广泛起来。   以太网是应用最广的联网技术,它以可靠性高、媒体信息量大、易于扩展和更新等优点,在企业、学校等领域得到广泛的应用。根据IEEE802.3 Ethernet标准规范,以太网每段同轴电缆长度不得超过500m,通过中继器互联后,网络最大距离也不得超过2.8km。在这种情况下,利用激光无线通信技术,超越以太网的地域限制,满足数据通信的需要,具有很强的应用价值。   1 基于以太网的激光无线通信系统   将
[网络通信]
电容模块在缓冲电路中的应用
    摘要: 讨论了IGBT模块缓冲电路的缓冲原理,给出了三种通用的IGBT缓冲电容,并介绍了美国CDE公司的三种电容模块的基本参数和特点以及在缓冲电路中的应用。     关键词: IGBT 缓冲电容 电容模块 1 引言 众所周知,在电力电子功率器件的应用电路中,无一例外地都要设置缓冲电路,即吸收电路。因为全控制器件在电路工作时莫名其妙损坏的原因虽然很多,但缓冲电路和缓冲电容选择不当是不可忽略的重要原因所在。 2 缓冲原理 电路中器件的损坏,一般都是在器件在开关过程中遭受了过大的di/dt、du/dt或瞬时功耗的冲击而造成的。缓冲电路的作用就是改变器件的开关轨迹,控制各种瞬态时的过电压,以降
[应用]
DAC数模转换后缓冲低通滤波电路
  第一级低通缓冲使用的运放OPA627单运放集成,频率最大可达16MHZ,转换速率可达55V/us,各个参数都相当的不错。第二级使用的是双运放OPA2134,极富胆味。这个电路主要是比较简单,方便初学者制作,只要使用的元件选料好点,都可以让你的CD机脱胎换骨。其中U1的负输入端(即2脚)接在DAC数模解码的输出端即可。这两片IC价格有点贵,经济条件一般的朋友可以选用其他的由场效应管构成输入的运放IC,例如中端的 OP275,低价的可以选用LF353或单运放LF356(注意:LF系列只有NS国半的声音还过得去,其他的不做考虑),TL082或TL072也属于这类,但用在这里就没有摩机的必要了。个人认为最少要用国半的LF353.
[电源管理]
DAC数模转换后<font color='red'>缓冲</font>低通滤波<font color='red'>电路</font>
节省空间的HVArc Guard电容器适用于无源缓冲电路
很多无源器件都可以用来制造无源缓冲 电路 ,用于吸收功率 开关 电路 中电抗的能量。缓冲电路可以钳位脉动噪声,或者减少关断时的功率损耗,其另一个应用是减少峰值 开关 电压。缓冲电路对于提高大多数开关 半导体 电路的效率都是至关重要。 在设计缓冲电路时,有几种不同的无源器件可供选择。如在高脉冲的应用中,薄膜聚丙烯 电容 器常常被用作 控制 电压上升速率(dV/dt)的缓冲电路。在设备启动过程中,标准的高电压MLCC 电容 器(多层陶瓷电容器)同样可以当作缓冲电路来使用,将电压钳位到某个固定水平上。MLCC电容器也可以用来钳位有害的瞬态电压。这些电容器都可以钳位双极管或MOS管等半导体开关器件上有害的瞬态电压。 这些电容器
[模拟电子]
高频电源模块缓冲电路优化探讨
摘要:高频电源模块的噪声主要来自功率变换和输出整流滤波电路。ZVZCS PWM全桥变换器实现了开关管的软开关,但其输出整流二极管不是工作在软开关状态,输出整流二极管在换流时,变换器的副边存在寄生振荡。本文讨论其产生原因及抑制办法。 1 副边整流二极管的反向恢复过程   实际上已导通的二极管在突然加上反向电压的一段时间内,电流下降到零以后,它并不立刻停止导通,还处于反向低阻状态。此时在反向电压作用下,载流子进入复合过程,于是在反方向继续流过电流;当载流子复合完毕,反向电流才迅速衰减到零。这个阶段就是二极管的反向恢复过程,如图1所示。   在反向电流衰减过程中,电路产生强烈的过渡过程,它在关断元件两端产生极高的过电压,即
[电源管理]
高频电源模块<font color='red'>缓冲</font><font color='red'>电路</font>优化探讨
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved