开关电源IC中误差放大器的自激振荡原理及补偿解决方法

最新更新时间:2013-05-16来源: 电源网关键字:开关电源  移相  环路增益 手机看文章 扫描二维码
随时随地手机看文章

目前随着开关电源的广泛应用, 控制IC 作为开关电源的心脏在其中扮演着重要角色。开关电源的控制IC 一般都会包含一个误差放大器,用来将输出电压的偏移等进行放大以控制主开关电路的动作,实现稳压输出。这个误差放大器本身是一个运算放大器,在实际使用中会加入负反馈,而由于外部元件及PCB 等因素的影响,误差放大器有时会产生自激振荡,使开关电源不能正常工作。笔者分析了误差放大器加入负反馈时产生自激振荡的原理,并以UC3875 控制IC 为例设计了外部补偿电路,并进行了实验验证。

  1 误差放大器产生自激振荡的原理

  1.1 自激振荡产生的原因

  加入负反馈后误差放大器的闭环增益G 的表达式为:

  其中A 为开环增益,F 为反馈系数,AF 为环路增益。

  由上式可知:当1+FA 趋近于0 时, |G| =∞。这说明即使无信号输入也会有波形输出,于是就产生了自激振荡。

  放大器的增益和相位偏移会随频率而变化。当频率变高或变低时,输出信号和反馈信号会产生附加相移。如果附加相移达到±180°,则此时反馈信号与输入信号同相,负反馈就变成正反馈。反馈信号加强,当反馈信号大于净输入信号时,即使去掉输入信号也有信号输出,于是就产生了自激振荡。

  即:

  一个实际的运算放大器, 内部存在着许多天然极点,他们造成的附加相移会使输出的相位偏移超过-180°, 当使用负反馈时会使放大器产生自激振荡。因此运算放大器大多都有补偿端口或为了使用方便直接在内部进行了补偿,这些经过内部补偿的运算放大器一般会补偿到在增益0 dB 以上只有一个极点,单独使用时即使将其用作单位增益放大器也不会自激振荡。

  1.2 负反馈放大电路稳定性的判定

  判断自激振荡的方法首先是看其是否满足相位条件,只有满足相位条件才有可能产生自激振荡。即如果当附加相移φ=±180°时,环路增益|FA |≥1,那么电路就会产生自激振荡。

  相反,如果当φ=±180°时,环路增益|FA| <1,那么电路就不会产生自激振荡。

  2 UC3875 误差放大电路

  2.1 UC3875 误差放大电路结构

  UC3875 是TI 公司生产的一款移相全桥软开关控制器,广泛应用于ZVS 和ZCS 拓扑结构的大功率开关电源当中。它内部包含一个误差放大器,该误差放大器输出端的输出电压与斜坡发生器的输出电压进行比较从而产生移相信号。它的AB 和CD 两组输出可以分别设定死区时间,非常适合应用于全桥谐振开关电源。本文中所用UC3875 的误差放大器部分电路接法如图1 所示。

  误差放大器的正相输入端接参考电压,输出端通过一个150 kΩ 电阻反馈到反向输入端,反相输入端通过一个470 kΩ电阻与输出电压采样电路相连。

  当对开关电源进行调试时测量其输出,发现输出非常不稳定。而后用示波器对UC3875 的控制输出端OUTA 与OUTC 进行观察,如图2,发现输出的移相信号产生了大幅度抖动,致使开关电源输出变得不稳定。随后在对误差放大器的输出进行观察时发现误差放大器产生了振荡,在输出端产生了一个不太稳定的正弦信号(图3)。由于误差放大器的输出与斜坡发生器的输出电压比较之后产生移相控制信号,因此UC3875 的输出控制信号会产生大幅抖动。

  2.2 UC3875 误差放大器振荡现象的分析

  根据UC3875 的数据表可知其典型带宽与开环增益分别为11 MHz、90 dB。大多数控制IC 的误差放大器已经过内部相位补偿,且补偿到即使闭环增益为0 dB(此时反馈量最大)时也不会发生振荡。但是在实际使用中,由于外部元件等因素的影响, 有可能产生新的极点, 使电路附加相移超过-180°,从而发生振荡。

  根据之前观察到的误差放大器输出端自激振荡波形可知其振荡频率大概在50 kHz 附近, 则此频率时附加相位φ≥-180°,且其开环增益要大于0 dB。根据这些条件可估算出外部电路产生的极点频率应该在5 kHz 附近,将其加入到误差放大器的增益与相位的频率特性简图中得到图4。其中P1 为内部补偿时设置的极点,P2 为外部电路产生的极点(图中用实线表示增益,虚线表示相位,图6 同)。

 

2.3 外部补偿网络的设计

  由于零点能产生超前相移, 可抵消极点产生的滞后相移。因此如果在电路中加入补偿网络,设置一个零点将能够抵消外部电路产生的极点,从而抑制放大器的自激振荡。由于误差放大器没有设置补偿端口,因此补偿网络需要设置在外部。如图5 所示,在反馈电阻Rf两端并联一个电容Cf,由此可产生一个零点。通过恰当设置此零点的频率就可抵消新极点产生的附加相移,使总的相移不超过-180°。因为所估算的外部极点频率为5 kHz,所以零点频率就要设置在5 kHz 附近。

  根据公式:

  将fz=5 kHz 带入,可得Cf=212 pF。

  选择Cf为220 pF 即可。由于在电路中放入电容Cf,因此将产生一个新的极点,它的频率为:

  将数值带入上式可得新的极点频率为1.5 MHz, 这相当于将外部极点P2 移动到了如图7 所示的P2′的位置。

  由图6 可以看出尽管在增益0 dB 以上存在两个极点,但是当增益降为0 dB 时,相移依然没有超过-180°,所以自激振荡条件就被破坏,电路不会产生自激振荡。同时从图上可以看到,使用这种方法时放大器的带宽损失很小。但是根据式(3)可以看出,新极点的频率与放大器的增益有关,如果放大器增益过小,则会因为极点向高频率移动距离太小而大大影响到补偿的效果。特别地当作为电压跟随器使用时(此时放大器输出与反相输入端直接相连,反馈电阻为零),新极点的频率不会向高频移动,则此电路就会完全没有效果。由于各种因素的影响以及估算的误差,实际的特性曲线会与理论有一些差距,因此所设置的零点还需要通过实验来进行调整(后面的实验也证实了这一点)。

  3 外部补偿网络的实验验证

  实验电路的连接依照图5 所示, 分别将容值为22 pF,100 pF,220 pF 的Cf接入电路中, 并观察UC3875 的控制输出波形。如图7 所示为使用22 pF 电容时的波形。此电路中由于所设置零点在极点之后距离较远的地方,波形抖动有一些减弱,但是其抖动幅度依然很大。

  图8 为使用100 pF 电容时的波形,可以看到其抖动幅度大幅减小。此时电路中所设置的零点频率比较靠近极点位置,已经体现出振荡抑制的效果,但输出的振荡幅度仍很明显。

  当更换为220 pF 电容时,波形的抖动基本消失。电路中零点位置在上文所估算的极点位置附近。通过对示波器上波形的仔细观察,仍然能发现极其微弱的抖动。这说明实际极点的位置与前面的估算值有些差距,因此在电路实际情况不是十分清楚的情况下,进行估算而得出的补偿网络参数还需要在实际实验中进行验证并调试。

  考虑到实际应用中各种因素的影响以及估算的误差,需要在设计补偿网络时保持一定的裕量。因此将Cf选为470 pF,将其接入电路中后UC3875 的输出控制的波形如图9 所示,输出波形抖动已经完全消失,UC3875 已经稳定工作。对误差放大器的输出端进行观察后发现,其输出已经变成一条平直的直线。其输出电压的振荡完全消失。

  4 结论

  虽然目前很多通用运算放大器及开关电源控制IC 内部的误差放大器都进行了相位补偿,但是有时外部会产生新的极点使电路变得不稳定。笔者所采用的方法是使用一个零点对新极点进行抵消,从而使其稳定工作,使用这种方法基本不会损失运放的带宽,同时能起到良好的效果。采用这种补偿方法需要有一个前提条件,那就是放大器需要有比较大的闭环增益,这样才能产生比较好的效果。而在开关电源应用中,为了得到稳定的输出电压,内部误差放大器的闭环增益一般都会比较大,因此非常适合使用这种方法。

关键字:开关电源  移相  环路增益 编辑:探路者 引用地址:开关电源IC中误差放大器的自激振荡原理及补偿解决方法

上一篇:具有温度监视限制功能的单片式降压型稳压器
下一篇:升压转换器的简单开路保护

推荐阅读最新更新时间:2023-10-17 15:43

开关电源的可靠性设计
   1 引言    开关电源 是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比如表1所示。           在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。以上两方面的数据表明,设计及元器件(元器件的选型,质量级别的确定,元器件的负荷率)的原因造成的故障,在
[电源管理]
<font color='red'>开关电源</font>的可靠性设计
智能功率开关电源IC设计
开关电源 是近几年电源市场的焦点之一,它最大的优点是大幅度缩小变压器的体积和重量,这样就缩小了整个系统的体积和重量。一般说来, 开关电源 的重量是线性电源的1/4,相应的体积大概是线性电源的1/3。所以 开关电源 对低档的线性电源,尤其是20W以下的线性电源构成了威胁,大有取而代之之势。但是传统的开关电源除了PWM 和 功率 MOSFET之外还包括50个左右的分立元件,这不但增加了成本、体积,而且还使可靠性受到了影响。这主要是生产工艺上的原因,开关电源在集成化上一直没有突破。 近几年,随着生产工艺技术的成熟,已经能将低压控制单元和高压大 功率 管集成到同一块芯片之中。TI、ON Semiconductor、Power、 Inte
[电源管理]
智能功率<font color='red'>开关电源</font>IC设计
基于UC3842的开关电源保护电路的改进
   引言   UC3842是美国Unltmde公司生产的一种性能优良的电流控制型脉宽调制芯片,它具有管脚数量少,外围电路简单等特点,因而得到了广泛的应用。但随着UC3842开关频率的提高,由它所构成的开关电源的保护电路也出现了很多问题。本文分析了UC3842保护电路的缺陷及改进的方法。   1 UC3842的典型应用   UC3842的典型应用电路如图l所示。该电路主要由桥式整流电路,高频变压器,MOS功率管以及电流型脉宽调制芯片UC3842构成。其工作原理为:220V的交流电经过桥式整流滤波电路后,得到大约+300V的直流高压,这一直流电压被M0S功率管斩波并通过高频变压器降压,变成频率为几十kHz的矩形波电压,再经过输
[电源管理]
电流传输比(CTR)对光耦反馈式开关电源设计的影响
CTR:发光管的电流和光敏三极管的电流比的最小值。 隔离电压:发光管和光敏三极管的隔离电压的最小值。 光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小
[电源管理]
开关电源怎样选用滤波电容
许多电子设计者都知道滤波电容在电源中起的作用,但在开关电源输出端用的滤波电容上,与工频电路中选用的滤波电容并不一样,在工频电路中用作滤波的普通电解电容器,其上的脉动电压频率仅有100赫芝,充放电时间是毫秒数量级,为获得较小的脉动系数,需要的电容量高达数十万微法,因而一般低频用普通铝电解电容器制造,目标是以提高电容量为主,电容器的电容量、损耗角正切什以及漏电流是鉴别其优劣的主要参数。   在开关稳压电源中作为输出滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,甚至数十兆赫,它的要求和低频应用时不同,电容量并不是主要指标,衡量它好坏的则是它的阻抗一频率特性,要求它在开关稳压电源的工作频段内要有低的等的阻抗,同时,对于电源内部,由于
[电源管理]
基于单周期控制的移相全桥谐振变换器
0 引言       谐振变换器具有容易实现软开关,可以工作在很高开关频率,同时产生的电磁干扰小的优点。但是一般的谐振变换器在输入和负载变化时一般通过变频来实现调节输出,这就为其他的设计带来许多不便,在移相全桥基础上设计的谐振变换器既可以实现软开关同时可以通过PWM的方式来调节输出。为了改善谐振变换器的动态响应采用改进的单周期控制方法,对输入和负载突变都有良好的动态响应。 1 移相全桥谐振变换器       移相全桥DC/DC变换器是一种采用移相控制技术的变换器,该变换器同一桥臂的两开关管的导通时间相等,但是互补的。相对于其他控制方式,移相控制全桥DC/DC变换器具有众多优点,诸如实现了软开关,结构简单,变换器适合高频工作,并能获
[电源管理]
基于单周期控制的<font color='red'>移相</font>全桥谐振变换器
开关电源中的光耦的作用
开关电源的光耦主要是隔离、提供反馈信号和开关作用。开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。          通常光耦与 TL431 一起使用。下面是led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地
[电源管理]
<font color='red'>开关电源</font>中的光耦的作用
一种多路输出开关电源控制器
O 引言   SC2463是一个高性能多输出降压转换控制器。它可以被配置用在不同的电源管理应用中,比如有多路输出电压需求的ADSL电源,需要正负电压的混合信号电源,电脑调制解调器电源,基站电源,通用的多路输出电压的电源系统。 l 描述   SC2463提供了4.5V至30V的宽输入电压范围,两个可设置达700 kHz开关频率的开关转换器,能提供高达15A输出电流及低至0.5V输出电压。它还提供了两个正输出电压线性调节器。芯片TSS0P一28小封装极大地减小了线路板面积。   SC2463两个异相降压开关转换器可以减小输入电流纹波,允许使用更少的输入电容。高达700kHz的开关频率可以减少输出电压纹波并且降低噪音,同时还可以减
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved