利用阻性负载增强LNA稳定性(上)

最新更新时间:2013-05-17来源: 与非网关键字:能量采集 手机看文章 扫描二维码
随时随地手机看文章
        本文提出了一个预测在放大器的输入和输出端口增加阻性负载以改善稳定性和噪声指数的新方法。该方法在宽广的频率范围内有效,能够用于低噪声放大器(LNA)和宽带放大器。 
        
        设计一个有效的低噪声放大器(LNA)需要高性能的晶体管。但大部分合适的器件在微波频率段存在着潜在的不稳定因素,导致振荡。幸运的是,晶体管输入或输出端的阻性负载可以预防所有无源和负载终端在目标频段上的振荡,而在其它频段上存在问题,带外震荡使可能的。 

        单独的稳定性参数?表示放大器的稳定性。对于无条件稳定放大器的性来说?>1是充分而必要的。这个参数可定义如下: 
        当:Δ=S11S22-S12S21时,?参数作为质量因数,随着?值的增加标志着稳定性也提高。例如,图1显示的?值是从Fujitsu半导体制造公司型号为FHR02X HEMT的放大器散射参数(S-参数)计算得到的。该图也显示出放大器无条件稳定以及可能不稳定的区域(覆盖其大部分的频段)。 

        为了理解在较宽频率段阻性稳定性的效果,必须决定包含晶体管和和稳定电阻的级联双口系统的等效传输参数。 
        图2提供一个例子,其中级连的第一个和最后一个双口网络各代表一个元件,串联或并联,或直通,中间的双口代表晶体管,其传输参数使由离散参数计算得到。该类网络的整体稳定性可由级连参数得到,从传输参数变换到离散参数,应用等式1决定整个配置的?值。一共有8种不同的输入输出组合可用来调查该技术,取决于电阻是否被串联或并联到一个或两个有源器件的端口(见表)。 
        一旦放大器是无条件稳定的,就可能测定换能器功率增益的最大值,Gtmax。Gtmax定义为一个放大器加载到负载的功率比放大器输入输出阻抗共轭匹配时能够从源吸收的功率,通常通过适当的设计输入输出匹配网络实现。表显示了八电阻组合在2GHz的计算值。加大稳定因子到1以上直接减少了最大跨导增益Gtmax。对于其它六种情况,稳定因子相同则功率增益相同。 
        图3显示了?作为从0.10到30GHz之间频率的函数,对应表中的9种情况:无、1和2个稳定电阻。网络中包含两个稳定电阻在该问题中引入了额外的自由度。结果,必须使用系统化的搜索算法寻找能够稳定晶体管的输入输出阻抗组合。典型的获取值的搜索算法采取一对嵌套的环,输入电阻值在外环而输出电阻值在内环。初试的电阻值递增或递减,取决于考虑的电阻时串联还是并联。如果该电阻对导致一个无条件稳定的放大器,也就是说,稳定因子?在任何考虑的频率大于1,程序报告?值最大处的电阻和频率值,并将绘出作为频率函数的结果(图3中的曲线6到9)。 
        在本文中,搜索算法设计成要寻找在整个频段上为晶体管提供稳定的电阻对,同时在2GHz处尽可能使稳定因子接近1(图3中的曲线6到9)。对于该特定的晶体管,程序证明对于并入串出(曲线6)、并入并出(曲线8),在大约10GHz范围内将?值调到最小是可能的。?最小值对于串入并出(曲线7)、串入串出(曲线9)是不可调的。 

        图3显示带并入串出(曲线6)、并入并出(曲线8)稳定电阻的放大器在整个频率范围内稳定,在2GHz处没有增益损失,比较而言其它四种全部串联或并联的组合只能在有限的频率范围内提供稳定性。 

        本节显示对于FHR02X HEMT的特定情况,所有八种阻性网络都能至少在有限频率范围内稳定放大器。为了在更一般的情况下使用该技术,考察了一系列其它阻性加载的微波放大器所有八种阻性下的网络稳定性,应用了本节呈现的技术和不同厂家晶体管的离散参数。八种阻性网络的大多数结果与图3显示的类似。然而,部分晶体管在某些情况下,对于一或两种阻性网络,找不到在所有频率上使整个放大器的?值大于1的单个或配对电阻。因此,阻性负载对稳定性的改进强烈地依赖于具体晶体管的特性,以及电阻本身。
关键字:能量采集 编辑:探路者 引用地址:利用阻性负载增强LNA稳定性(上)

上一篇:AMC1204应用指南
下一篇:利用阻性负载增强LNA稳定性(中)

推荐阅读最新更新时间:2023-10-17 15:43

能量采集时代:物联网和可穿戴设备需能自我供电
 预计到2020年,全球将拥有500亿到3000亿台物联网设备,它们中的大部分属于由新型微控制器、无线和传感器技术支撑的小型物联网设备。由于没有用于数据和电源的线缆,这些物联网和可穿戴设备必需能自我供电。但如果每隔六个月或一年,你就得帮这些设备更换电池,那就有点悲催了。 能量其实无处不在,能量收集和储存技术其实也并不是很新。但随着物联网的飞速发展,越来越多的公司有兴趣和动力去开发更有效的能量收集芯片、系统和可充电电池,以便能够在整个产品生命周期中持续使用。但对这些公司来说,最大的挑战就是找到如何自行收集/储存能量的方法以便持续使用,以及如何将这样的超低功耗芯片安装在小型物联网设备中。 TI微能量采集开启无电池工作时代
[嵌入式]
预测:2010年硬件方面十大潜力新兴技术
经历了惨重的产业衰退,好不容易感受到景气复苏的科技厂商们,该是重新振作投入创新研发的时候了…但2010年什么会红?该把钱砸在哪里才不会变冤大头?以下是EETimes美国版所选出的、值得特别注意的十项新兴技术。 虽然软件看来也将在2010年扮演要角,不过以下选出的十大潜力新兴技术主要是硬件方面的,且特别看重其在省电、降低二氧化碳排放量、精简材料等方面的条件(这些条件也可说是推动那些技术的主要力量);至于那些已经是主流话题、或是还需要长期发展的技术项目则未考虑在内。 当然,这十项由编辑们选出的技术(排列顺序并无特别规则),也许不是百分之百准确成为2010年的明星,但它们对整个产业的影响力还是值得关注;如果
[嵌入式]
适用于能量采集应用的电源管理架构
过去几年,各大公司都做出了相当大的努力,目标是让一些持续供电和无电池型系统能够利用自然能工作。开发这种系统所需的关键集成电路 (IC) 是超低功耗微处理器、无线电器件和电源管理 IC。尽管我们在低功耗微处理器和无线电器件方面已经取得了相当大的进步,但适用于能源采集应用的一些电源管理 IC 只到最近才出现在市场上。本文将简单介绍一些可用自然能源,之后将详细讨论为这些能源选择 PMIC 时需要考虑的因素。 自然能电源广义上可划分为直流 (DC) 电源和交流 (AC) 电源。DC 电源包括采集自各种能源的采集能量,它们随光照强度和热梯度变化较慢,使用太阳能电池板和热电发电机。这些采集器的输出电压不必经过整流。AC 集成器包括使用压电
[电源管理]
适用于<font color='red'>能量采集</font>应用的电源管理架构
围绕能量采集IC的竞赛正在上演,未来前景看好
能够从所处环境中采集能量的系统已经存在了,其中最为人所知的可能是自供电的手表。但是,现在的IC已经能以和石英电子手表差不多的功耗执行尖端的功能,因此催生了一场开发能量采集技术和标准的竞赛。在很多应用中,环境自身可以通过温度差异、振荡或光线来能够提供所需的能量。 由于能量采集器一般需要很长时间才能够采集到很少的能量,而这些能量随后又会被传感器上的数据传输系统损耗,因此在很多情况下采集器都带有一个电容器来作为能量存储子系统。在飞机制造、个人健康监控系统或防入室盗窃检测系统等各种应用中,能量采集-或者说能量积聚,将形成一个规模可能达到数十亿美元的市场。 柏林研究咨询公司VDI/VDE Innovation + Technik
[焦点新闻]
能量采集时代:物联网和可穿戴设备需能自我供电
预计到2020年,全球将拥有500亿到3000亿台物联网设备,它们中的大部分属于由新型微控制器、无线和传感器技术支撑的小型物联网设备。由于没有用于数据和电源的线缆,这些物联网和可穿戴设备必需能自我供电。但如果每隔六个月或一年,你就得帮这些设备更换电池,那就有点悲催了。   能量其实无处不在,能量收集和储存技术其实也并不是很新。但随着物联网的飞速发展,越来越多的公司有兴趣和动力去开发更有效的能量收集芯片、系统和可充电电池,以便能够在整个产品生命周期中持续使用。但对这些公司来说,最大的挑战就是找到如何自行收集/储存能量的方法以便持续使用,以及如何将这样的超低功耗芯片安装在小型物联网设备中。   TI微能量采集开启无电池工作
[电源管理]
<font color='red'>能量采集</font>时代:物联网和可穿戴设备需能自我供电
瞄准物联网 意法半导体推出能量采集芯片
意法半导体日前表示,其已推出能量采集芯片SPV1050,用于太阳能或热能发电,可支持从几微瓦至数毫瓦的应用。 该产品计划下季度量产,定价为1.15美元。 SPV1050包括了1.8V和3.3V稳压器,无需外部元件即可直接与微控制器或无线发射器相连。 SPV1050支持最大功率点跟踪技术(MPPT),可以对能源采集过程进行优化。 电池充电电路支持多种类型的电池,包括锂离子和锂聚合物,锂薄膜固态电池,NiMH和NiCd,以及超级电容器等。 “能量收集带来环境效益的改善,并有助于降低设备成本,随着能量转换效率不断提高,系统功耗不断降低的前提下,能量采集的市场将会更加宽广。”ST Matteo Lo Presti
[电源管理]
高效率、高压、降压DC-DC转换器MAX5033
MAX5033为易于使用、高效率、高压、降压型DC-DC转换器,工作于高达76V的输入电压,空载时仅消耗270µA的静态电流。脉宽调制(PWM)转换器重载时工作在固定的125kHz开关频率,轻载时可自动切换到脉冲跳频模式,以达到低静态电流和高效率。MAX5033包括内部频率补偿,简化了电路应用。器件内部采用低导通电阻、高电压DMOS晶体管,以获得高效率和降低整个系统成本。此器件包括欠压锁存、逐周期限流、间歇模式输出短路保护及热关断功能。   MAX5033可提供高达500mA的输出电流。提供外部关断模式,具有10µA (典型)的关断电流。MAX5033A/B/C型号分别提供固定的3.3V、5V或12V输出电压;MAX5033
[模拟电子]
高效率、高压、<font color='red'>降压</font><font color='red'>型</font><font color='red'>DC</font>-<font color='red'>DC转换器</font>MAX5033
Zwipe牵手FPC:生物识别+能量采集为智能支付带来创新方案
两家领先的 生物识别 公司将一起扩大智能卡 开发与提供生物特征识别技术的两家领先公司 Zwipe , A.S.和 Fingerprint Cards  AB (FPC)近日宣布进行战略合作。这两家公司将在围绕支付行业生物识别智能卡发展应用市场上面发挥领导作用,并将开展联合活动,取得行业内的思想领导地位。   Zwipe已经开发和推出了全球首款能够搭载于标准信用卡的生物识别系统。凭借其独一无二的 能量采集技术 ,Zwipe非接触支付卡无需电池,只需借助近场通讯(NFC)技术,就能从支付终端获取所需能量。通过利用来自于Fingerprint Cards的低能耗和高性能传感器,该解决方案已经在由银行和支付行业领先机构进行的试用
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved