音频系统应用中的“POP”噪声以其常用解决方法

最新更新时间:2013-05-18来源: 与非网关键字:音频系统  噪声 手机看文章 扫描二维码
随时随地手机看文章
  “POP”噪声是指音频器件在上电、断电瞬间以及上电稳定后,各种操作带来的瞬态冲击所产生的爆破声。本文将讨论几种常用的解决方法及其工作原理,这些方法针对具体的集成电路具有各自特点,应用时需要根据实际情况综合考虑。

图1:单端模式与桥式模式输出电路示意图。

  本文提到的音频系统是指音频半导体器件,包括音频数模转换器、模数转换器、音频放大器等的应用系统。产生“POP”噪声的瞬态冲击通常是一种很窄的尖脉冲,用傅立叶分析展开后,其频谱分量很丰富,且在频域内的能量分布相对平均。本文下面讨论的几种“POP”噪声解决方法的目的,就是要降低20Hz~20kHz范围内的谐波分量。对绝大多数人而言,如果信号的峰峰值电压小于10mV,就已经听不见了。

桥式(BTL)输出与单端(SE)输出

图2:桥式模式与单端模式输出的“POP”噪声。

  桥式结构输出相对单端模式输出而言有很多优点,比如桥式模式可在相同的电源电压Vdd条件下,输出较高的电压VOBTL=2*VOSE,在相同的负载条件下输出更大的功率。图1为这两种输出电路的示意图。

  需要指出的是,桥式模式能有效抑制共模噪声。输出功率相同时,桥式模式的噪声明显小于单端模式的噪声(如图2所示,蓝色通道接负载两端,绿色通道接电源Vdd)。这是因为相同的冲击会同时出现在桥式输出结构的“+”、“-”两端,并通过负载后相互抵消,不对扬声器做功,因而不会发出“POP”声。这种结构对于上电、掉电噪声以及操作噪声都有很好的抑制作用。

图3:桥式结构的两种电路形式。

  常见的桥式结构有两种,它们对抑制“POP”声的能力有细微差别。图3左边的电路是两个放大单元并联连接,同一个输入信号分别进入两个放大单元AMP1、AMP2的“+”、“-”输入端,而且使它们的放大倍数保持相同、相位保持相反(相差180度)。在这里,AMP1单元网络的增益GAINUP=-R9/R8=-2,AMP2单元网络的增益GAINDOWN=1+R11/R12=2。单个电阻的精度误差通常为±30%,但在同一个芯片内,这种偏差朝同一个方向,如果设计恰当,电阻比值的精度可以保证在±1%以内。AMP1、AMP2的DC参数也同样朝同一个方向偏差,所以在“+”、“-”输出端可以很好地抵消共模信号。

图4:OCL输出结构。

  图3右边的电路则采用级联形式,前一级的输出信号进入下一级的“-”输入端,AMP4单元网络的增益GAINBACK=-R14/R13=-1。事实上,AMP3的输出经过AMP4反向后会有一定的延时,在“+”、“-”输出端并不能完全抵消。AMP3的失调电压等支流误差信号会在AMP4中复制,并与AMP4的失调电压一起送到“+”端,而无法与“-”端完全抵消。因此这种结构抑制“POP”声的效果略差一些,通常用在小功率器件中。

  除此之外,还有一种结构也能有效抑制共模噪声,那就是无输出耦合电容(OCL)结构(见图4)。该结构与桥式结构非常类似,在输出端将直流共模电压抵消掉,只有交流信号对负载作功。与桥式结构一样,OCL结构由于省去了耦合电容,可给音频系统带来另外一个好处,即系统的频率响应可以延伸到很低的范围,后面将对此作详细介绍。

增大VBIAS的滤波电容

图5:单端模式电路的“POP”噪声与Vbias电压的仿真波形。


  音频集成电路通常都有一个管脚叫做Vbias,或者Vref、Vmid、Vsvr、bypass等,它是内部直流基准电压,若要内部电路能工作,这个偏置电压必须建立起来。实际应用时,该管脚通常外接一个旁路电解电容到地,该电容起滤除噪声的作用。对于使用正电压的单电源系统来说,当系统工作稳定时,基准电压值约等于Vdd/2。增大这个电容的容值能抑制“POP”噪声。当芯片上电或从待机状态切换到工作状态时,直流偏置电压开始建立,从0逐渐升高,并对Vbias滤波电容充电。经过一定时间后,电压上升到Vdd/2,此时芯片就可以工作了,输出的音频信号基于这个直流电压上下摆动。同样,当芯片掉电或进入待机状态时,滤波电容放电,偏置电压开始下降,从Vdd/2下降到0。实验证明,芯片上电、掉电时的“POP”声就是由偏置电压的瞬间跳变引起的。


  图5是仿真结果,红线代表Vbias电压,蓝线代表单端模式的负载端输出(在耦合电容之后,如图1的左边电路,Co=220uF,RL=16Ω)。如果Vbias跳变得缓慢,“POP”冲击就会减小(如图6所示),此时的冲击脉冲变宽,幅度有所下降,“POP”声也变小了。使Vbias的上升、下降过程变缓,就可增加基准电压的跳变延时。假定滤波电容的充放电电流是个常数,可把这个过程简化成一阶RC模型,根据公式(1),可计算出电压从0上升到Vbias/2,或者从Vbias/2下降到0所需的时间。

tdalay=0.69*R*C (1)

图6:Vbias跳变变缓后,“POP”噪声的仿真波形。


  因此,增大Vbias的滤波电容可以减缓直流基准电压的上升、下降速度,起到减少“POP”噪声的作用。图7是增大电容后,基准电压跳变变缓的效果,其中红线代表电源电压Vdd,蓝线代表Vbias电压(假设Vdd=5.0V,Vbias=2.5V)。

  有些音频芯片集成了一个固定的延时电路单元,上电后需要经过一段固定延时,Vbias才开始缓慢上升到稳定状态,此时从低电压到高电压的上升延时时间为tpLH。当芯片掉电时,集成电路的实现方式使其很难再延时一段时间才开始下降,但是仍可以增大从高电压到低电压的下降延时时间tpHL,以达到更好的抑制效果,此时只需使放电时的等效电阻大于充电时的等效电阻即可。图8显示了MAX9890 的Vbias变化时序。

图7:耦合电容不同时的“POP”冲击波形。

tpLH=0.69*Rcharge*CBIAS (2)
tpHL=0.69*Rdischarge*CBIAS (3)

  需要注意的是,滤波电容过大会使芯片的建立时间变长,使人感觉声音“久久”没有输出。另外,电容过大还会使音频系统的重要指标——总谐波失真+噪声(THD+N)变差。这里不解释详细原因,取值时请参考相应的数据手册并进行折衷选择。

减小输出端的耦合电容

  对于单端的输出结构,在单电源系统中通常需要接一个电容(如图1所示)。这个电容的作用是:(1)隔断直流基准电压Vbias。如果没有隔直,直流电压会直接流过后面的扬声器线圈,使纸盆平衡位置偏向一端,若Vbias过大还可能损坏线圈。(2)耦合交流音频信号。它与扬声器负载构成了一阶高通滤波器(HPF),根据公式(4),电容的大小与低频处的截止频率fc有关。

fc=1/(2π*RL*Co) (4)

图8:MAX9890的Vbias变化时序。

  电容Co越大,截止频率fc则越低,这意味着更低的频率也可耦合到负载上去(见图9)。

  减小Co的容值可使“POP”冲击的幅度变小、脉冲宽度变窄。由于“POP”冲击的频谱能量大都在高频,减小Co的容值同样可以减少可闻噪声。图10显示了电容Co分别为10uF、47uF、100uF、220uF时的“POP”冲击情况。可以看出,当Co减小到一定值后,再减小该值,噪声抑制效果提高得很少。但根据公式(4),减少电容值可明显提高截止频率fc(如图9所示),因此设计工程师必须权衡,作出一个折衷选择。

  当然,有的芯片具有低音增强特性,可在外部反馈回路中通过增加一个零点的方法,来使低频部分的增益大于通带内的增益。比如对于LM4838器件来说,调整电容Cbs的大小就可以调整增益拐点在频率上的位置(见图11)。

用恰当的操作来抑制“POP”噪声

图9:不同耦合电容下的频率响应特性(RL=16Ω)。


  在音频功率放大器芯片上常常有MUTE、STB(Standby)管脚。当MUTE信号有效时,芯片内部将输入端短接到地,其它电路保持正常工作;而当STB信号有效时,则关断音频电路静态时最耗电的Vbias偏置电路。对采用CMOS工艺的音频电路而言,关断Vbias偏置电路后的静态电流主要是MOS管的亚阈值电流,即MOS管的漏电流(微安级),管子的阈值电压越小,此电流值越大。由以上讨论可知,若单独使用STB,由于Vbias的瞬变,难免会引起“POP”噪声。如果将这两个管脚按一定顺序正确使用,则可有效地抑制开关机噪声(见图12)。芯片上电时,先使MUTE、STB有效,待电源稳定后,先释放STB,再释放MUTE。掉电操作时,在准备掉电之前先使MUTE有效,然后再使STB有效,直到Vdd变为0。这是因为通常由MUTE操作引起的“POP” 噪声要小于STB操作引起的“POP” 噪声。

图10:耦合电容不同时的“POP”冲击波形。


  图12容易使人产生这样一个误解:STB的操作全被MUTE的作用所覆盖,是否不需要STB也可以抑制噪声呢?答案是肯定的,无论STB是什么状态,若只使用MUTE且按照图12的顺序执行,的确可以抑制“POP”声。但需要注意的是,芯片在上电过程中(从0到Vdd),电源只需要达到某个小于Vdd的电压值,Vbias就会从0跳变到Vdd/2。此时电源还未稳定,Vdd会通过输出驱动管对负载产生一个无法预测的随机冲击噪声。如果此时Vbias还未建立(仍为0V),则该随机冲击噪声的影响很小,至少采用图12的操作可以抑制电源瞬变冲击引起的“POP”噪声。等电源稳定后,Vbias带来的冲击也只是由从0到Vdd/2(而不是从0到Vdd)的电源跳变引起的。但实际的情况比较复杂,有些芯片的输入端的直流基准与输出端的直流基准是两个独立的电压,当STB有效时,输出端的Vbias并不跳变;还有些芯片在MUTE有效时是将输出端短接到地。即使MUTE为有效状态,也只是将输入端接地,输出端的Vbias冲击仍然会通过耦合电容Co传递到负载。无论情况怎样,从抑制噪声的角度考虑,设计工程师总是希望输出端的Vbias变化缓慢,最好是保持不变且始终为0V。

使用外部的静音(MUTE)电路

图11:LM4838 低音增强特性,(a)典型的应用原理图;(b)不同Cbs值的频率响应。


  从以上讨论可知,芯片上电、掉电时出现的“POP”噪声是比较难解决的。事实上也的确如此,没有Vdd可能意味着整个系统同时失去电源,MCU不能工作,I/O状态失去控制,也无法完成图12所示的操作。但是,仍有一些方法可以解决这个难题,例如使用外部的静音电路,此时上面提到的“减小‘POP’声,就是要避免直流瞬变”的思路仍然可用。因此这个静音电路应该具有如下功能:(1)上电时,在Vdd开始上升之前,输出一个稳定的有效信号(假设为高电平)来驱动MUTE和STB管脚;(2)掉电时,在Vdd开始下降之前,输出一个稳定的有效信号(假设为高电平)来驱动MUTE和STB管脚。

  图13所示的电路基本可以满足以上两个要求。当+12V上电时,电荷通过D1到达Q1的e极,也通过R1、R2到达Q1的b极。由于电荷需要对C2充电,所以Q1的b极在上电刚开始的一段时间trise内比e极低一个阈值电压,此时Q1导通,在c极输出一段时间的高电平信号MUTE_OUT1。图14为外部静音电路的仿真结果。

图12:上电、掉电时MUTE与STB的正确时序。


  当+12V突然掉电时,C2通过D2迅速放电,此时D2正向导通,将R1短路并形成放电回路。因为C2容值小,储存电荷少,所以放电时间常数ttailrise。C1储存的电荷不能通过D1释放,所以Q1的e、b极又出现了压差,使Q1导通并再次输出高电平。一旦电源稳定后,Q1的b极电压略高于e极,则Q1截止,MUTE_OUT1处于高阻状态。

  实际的应用系统一般会有多组电源同时存在,由于电压不同、负载的轻重不同以及所并联的去耦电容不同,每组电源的上升、下降时间会有差异。这种现实的差异正是图13电路的工作前提:将上电、掉电时间短的电源放到+12V处,将上升相对较慢的电源作为音频Vdd。这一点需要特别强调。

  下面介绍图13电路的参数优化方法。图15显示了外部静音电路中A、B、C三点的电压变化情况。在上电、掉电回路有一个公用的器件C2,C2的取值要合适,目的是实现ttailrise。可以通过加大充电回路中的电阻R1并减小放电回路中二极管D2的正向电阻,来加大这两个时间的大小差别。二极管是半导体器件,其正向电阻是非线性的,阻值与流过的正向电流有关。

图13:外部的静音电路。


RFOR=Φr/(IFOR+IS) (5)

  其中,Φr=kT/q=26mV@T=300K,它是一个与温度有关的电压常数;IS为饱和电流,是一个与结面积有关的常数。从公式(5)可看出,正向电阻随正向电流的增大而减小。这里使用系统中较高的电压+12V作为静音电路的电源,是为了增加二极管D1的放电电流。在C2充电的过程中,有两个电流对其充电,其中一个电流来自+12V并经过R1,其上升时间(从10%到90%)为:

trise=2.2*Rcharge*C (6)

  将R1、C2带入公式(6)计算出上升时间为10.34秒。但实际上的上升时间并没有这么长,其原因是还有另一个来自Q1的b极的充电电流。Q1导通时,B点的电压等于A点电压减去发射结压降,大约为10.6V,集电结也正偏,管子处于饱和状态,因此Q1的b极流出的电流通过R2对C2充电,加速了C点电压的上升。

图14:外部静音电路的仿真波形


  +12V电压稳定后,Q1的e、b电压差减小,管子逐渐截止,MUTE_OUT1输出为高阻状态,集电极开路。当系统突然掉电时,C点电压突然下降到0.7V(D2的压降),e、b端又出现了压差,导致Q1导通,c极输出有用的高电平信号。这时C1中储存的电荷只能通过Q1、R2、D2释放,为了延长这个放电过程,可以适当增加R2的阻值,但阻值过大会使b极电流减小,使管子的驱动能力变差。

  在系统正常工作时,MUTE信号的开关可以使用MCU I/O端口作为普通的逻辑信号。为增强驱动能力,该端口的信号常常经过PNP晶体管反相后输出MUTE_OUT2(见图16),这样当MUTE0为低时,反相后的高电平MUTE_OUT2来自两个电阻的分压,即R5与Q2的e、c极饱和电阻Rbe,由于Rbe<

图15:静音电路中A,B,C各点的电压变化

  另外,来自MCU的MUTE0为低电平有效,在MCU上电、掉电的过程中,I/O的电平是未知的。如果用工具进行仿真,该端口在复位完成之前是一个不确定状态(逻辑值为“X”)。事实上,在实际的电路里并没有“X”值,而只有“1”和“0”。幸运的是,在笔者使用过的一些51系列MCU中,在这一段所谓的‘失控’时间里,I/O端口始终输出一个稳定的“L”电平。

  MUTE_OUT2与上述的MUTE_OUT1形成“或”的逻辑关系,共同作用于MUTE管脚。对于输出功率不大的音频放大器,还常常用一个NPN晶体管在输出端与地之间形成一个开关,当估计可能出现“POP”噪声时,将此开关闭合,而当需要输出时,将此开关断开(如图17所示)。

图17:两个MUTE形成“与”的逻辑关系。

图16:使用MCU I/O端口作为第二个MUTE信号。


  这里只强调一点:要减小Q3闭合时的c、e间的电阻,就要从b极输入更多的电流,使其饱和深度加大,而且还要选择合适的R7阻值。由于Q3的c极是接在耦合电容之后,左右通道输出(OUT_L/OUT_R)可以为负值,所以为在正常工作时保证Q3可靠地截止,R6的另一端可以考虑接到更低的负电平上,同时使用较大的阻值以免影响Q3的饱和效果。如果输出功率很大,可考虑用物理隔离的继电器代替Q3。

  虽然以上提到了5种解决“POP”噪声的方法,但它们并不是孤立的。对于实际应用中碰到的问题,要找到产生”POP”声的主要原因,另外还要综合考虑,选择最有针对性的、最经济的解决方法。

作者:王玉   系统工程师   BCD半导体制造有限公司

图17:两个MUTE形成“与”的逻辑关系。

关键字:音频系统  噪声 编辑:探路者 引用地址:音频系统应用中的“POP”噪声以其常用解决方法

上一篇:为你的DC/DC转换器选择最佳转换频率
下一篇:使DC/DC变换器限流特性线性化的热敏电阻器网络

推荐阅读最新更新时间:2023-10-17 15:43

有源滤波器中电流传感器噪声抑制电路
 随着用电设备类型的日益增多,出现了很多非线性负载,此类负载在运行过程中,产生大量的高次谐波,这些谐波对于电网中的电力设备有着很强的危害,因此供电部门对于谐波的注入量有着严格的限制。有源滤波器的设计思路是向电路注入除基波电流以外的电流,从而抵消系统中原有的谐波电流,使得系统电流中只有需要的基波电流。不同于并网逆变器,有源电力滤波器本身发出的电流为非正弦波形。这就意味着应用传统的数字信号处理算法消除噪音的方法在这里不完全适用,而实际应用中来自外部的干扰极大地影响了系统的运行。在此重点讨论电流传感器的选择和采样调理电路的设计,从而使得.由于这两者的非理想性对系统的影响最小。     1 有源电力工作原理简介     有源滤波电路如图1所
[电源管理]
有源滤波器中电流传感器<font color='red'>噪声</font>抑制电路
手机接收通道噪声系数测试
针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 问题提出 下图是MAXIM 公司TD-SCDMA 手机射频单元参考设计的接收电路,该通道电压增益大于100dB ,与基带单元接口为模拟I/Q 信号,我们需要测量该通道的噪声系数。我们现有的噪声测试仪表是HP8970B ,该仪表所能测量的最低频率为10MHz ,而TD-SCDMA基带I/Q 信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。
[网络通信]
噪声对策关键之LC复合型EMI滤波器
本次,将从LC复合型EMI滤波器开始连载。   <C与L组合后,插入损耗会出现急剧的下降趋势>   之前,介绍了电容器与电感器组合后比单体的插入损耗下降趋势更急剧。   图1显示了其图形特征。      图1 滤波器的元件数与频率特征   如图所示,滤波器元件数量越多,则滤波器插入损耗下降趋势更急剧。   <滤波器的插入损耗特性的倾斜度越大,则信号与噪音的选择性也相应提高。>   随着滤波器的插入损耗特性倾斜度变大后,当信号接近于噪音的频率后,就难以对信号再造成不良影响。图2显示了信号频率较高,而接近于噪音频率时的例子。当两者的频率接近后,若使用插入损耗较平缓的滤波器,并选择可充分降
[模拟电子]
<font color='red'>噪声</font>对策关键之LC复合型EMI滤波器
简析剧场数字音频系统的组成与发展
随着中国经济的快速发展、综合国力的大大提高,人民群众对精神文化的需求也越来越高,文化生活已成为普通百姓生活中不可缺少的一部分。在这种大背景下,满足精神文化需要的各种平台得到了进一步的发展。剧场自然也是其中之一,此文将介绍剧场数字音频系统组成及其传输网络。   一、典型剧场音频系统组成及各部分功能   一个典型的剧场音频系统应该包括声源、调音台、周边设备、信号处理设备、功放、音箱和传输系统等几个部分,见图1。根据剧场的特点一般也分为观众厅扩声系统、舞台返送监听系统、效果声扩声系统、控制室监听监视系统、周边电声处理辅助系统、拾音及音源播放系统。      图1 剧场音频系统组成   一个大型的剧场音频系统
[模拟电子]
简析剧场数字<font color='red'>音频系统</font>的组成与发展
MAX4238白噪声发生器的1 / f噪声分量输出
  白噪声发生器(那些其中输出功率密度与频率图是平)正在测试电路,有较长的低频或直流响应有用。对于频率范围,扩展到几赫兹或以下,然而,白噪声发生器的设计是复杂的,粉红噪音的存在(也称为闪烁噪声或1 / f噪声)。 由半导体器件产生的噪声总是具有粉红噪声特性签名:它的输出功率密度随频率降低幅度增大,与AT赫兹高达数几十千赫频率位于一个角落里开始。噪音产生一个高值电阻有其自身的1 / f分量,其价值和特性用于制造电阻的技术有所不同。如果,另一方面,电阻值低,设备与低噪音技术为基础,噪音几乎全白(功率密度随频率不变)。不幸的是,低电阻值也产生了噪声功率密度幅低价值,并介绍了该级别的任何放大设备增加了自己的粉红噪声。 你可
[模拟电子]
电子电气类产品噪声测试简介
随着经济的不断发展,噪声污染已经逐渐成为一个日益受到重视的话题,人们身边的电子电气类产品所发出的声音是否符合相关规定和标准,以及我们该如何测试其发出的声音,下面将详细为您介绍: 基本概念介绍: 1)声音:物体振动产生的,当振动频率在20-20000Hz时候作用于人引起的感觉。 2)噪声:为人们生活和工作所不需要的声音。 3)时间平均声级或等效连续声级 。 A计权声级能够较好地反映人耳对噪声的强度与频率的主观感觉,因此对一个连续的稳态噪声。对一个起伏的或不连续的噪声,用等效连续声级即 来评估。 是用一个相同时间内声能与之相等的连续稳定的A声级来表示该段时间内的噪声的大小。
[测试测量]
电子电气类产品<font color='red'>噪声</font>测试简介
开关电源设计的噪声降低法
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。 1 电路和器件的选择 一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关)、ZCS(零电流开关)、共振模式.(ZCS的一种)、SEPIC(单端初级电感转换器)、CK(一套磁结构,以其发明者命名)等。 减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。使用软开关技术,虽然会稍微降低效率,但在节省成 本和滤波/屏蔽所占用空间方面
[电源管理]
安捷伦新型模拟信号发生器提供优良近端相位噪声性能
安捷伦科技公司日前宣布,推出一款能够提供最佳近端相位噪声性能的模拟信号发生器,其频率范围高达3.2或9GHz。高精确度和优良性能使其成为设计和制造业测试工程师的理想工具,适用于宽带信号测试或制造雷达、电子对抗及人造卫星或陆地无线电系统。 Agilent E8663B模拟信号发生器的近端相位噪声性能,使得轻松测试高分辨率雷达和电子战系统及元器件成为了可能。出色的电平精度确保了所有测量的可重复性和精确性。另外,为保护用户的长期投资,安捷伦还将在其停产后继续提供支持长达10年的支持服务。 Agilent E8663B模拟信号发生器取代了已停产的HP或Agilent 8662A和8663A信号发生器 ——它们曾是自1981年以
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved