手机接收通道噪声系数测试

发布者:数字探险家最新更新时间:2006-07-27 来源: 电子系统设计关键字:接收机  噪声  测试 手机看文章 扫描二维码
随时随地手机看文章
针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。

问题提出

下图是MAXIM 公司TD-SCDMA 手机射频单元参考设计的接收电路,该通道电压增益大于100dB ,与基带单元接口为模拟I/Q 信号,我们需要测量该通道的噪声系数。我们现有的噪声测试仪表是HP8970B ,该仪表所能测量的最低频率为10MHz ,而TD-SCDMA基带I/Q 信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。




下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。

利用频谱仪直接测试

利用频谱仪直接测量噪声系数的仪器连接如图2 所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于100dB ,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。

测量步骤一,先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q 端口可以得到一个点频信号,调节接收机通道增益使I/Q 端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G;

测量步骤二,接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q 端口在刚才点频频点处的噪声功率谱密度,I 端口记为Pncdensity(dBm/Hz), Q 端口记为Pnsdensity(dBm/Hz) ,则接收通道噪声系数有下式给出:

上式中kb 表示波尔兹曼常数,F 是噪声系数真值,我们用NF 表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF 的显式表达式如下:

关于方程2 与方程3 的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为:

现在考虑噪声问题,为简化计算,这儿设当前温度为290K ,即定义噪声系数的标准

温度。根据噪声系数的定义,我们可以将系统产生的噪声等效到输入端口,该噪声与资用噪声功率和应等于资用噪声功率的F倍。下面我们用一个窄带平稳高斯过程来描述这两部分噪声之和,设噪声带宽为2B,下面方程给出了该噪声的一些特性:

比较方程4 与方程7,再参照方程5 式与6 式,我们可以得到接收机输出端的噪声表达式:

结合方程8 与方程7 可以直接得到方程2,结合方程9 与方程7 可以直接得到方程3,注意I 与Q 端口噪声带宽为B,是射频噪声带宽的一半。下图比较形象地给出了噪声变换过程:

从上图还可以看到,在数值上,输出同相噪声功率谱密度与输入同相噪声谱密度除通道增益与噪声系数外,相差6dB,这说明输入同相噪声上下两边带是严格相关的;输出正交噪声谱密度与输入正交相噪声谱密度相比除通道增益与噪声系数外,同样也有6dB 增益。

借助标准噪声源精确测试

这里介绍的方法即Y 系数法,也称为冷热负载法,一般噪声系数测试仪表就采用该方法,但仪表有它自身的限制,如HP8970B 所能测量的最低频率为10MHz,待测件最大增益80dB。我们这里采用通用频谱仪来检测待测件输出噪声大小,从而避开了噪声测试仪表在噪声检测上的限制,再根据Y 系数法原理计算出待测件噪声系数。下图给出了该方法的仪器配置图:

测量步骤一,先将接收机接到点频信号源侧,利用信号源产生一个灵敏度电平的点频信号(因为我们通常感兴趣的是接收机小信号时的噪声系数),频点与本振信号错开一点,这样在基带I/Q 端口可以得到一个点频信号。调节接收机通道增益使I/Q 端点频信号幅度适中;

测量步骤二,接步骤一,保持接收机所有设置不变,将接收机接到噪声源一侧,噪声源置为冷态,设冷态噪声温度为T1,用频谱仪测量I 端口噪声功率谱密度(I与Q有相同的性质,故此处仅提及I 端口),记为Poc(dBm/Hz);

测量步骤三,接步骤二,保持接收机设置不变,噪声源置为热态,设噪声温度为T2,用频谱仪测量I 端口噪声功率谱密度,记为Poh(dBm/Hz);

所谓Y 系数法中的Y 即测量步骤三与测量步骤二两测量值的比值:

设接收机等效噪声温度为Te。我们可以用冷态源噪声温度,热态源噪声温度,接收机等效噪声温度来表示系数Y,如下式:

设噪声头超噪比为ENR,标准噪声温度为T0(290K ),根据超噪比定义可得到下面等式:

根据噪声系数与等效噪声温度定义可以得到下式:

联立方程11,12,13,可以容易求得噪声系数关于ENR、Y、T1、T0 的函数关系,其对数表达形式如下:

一般冷态噪声温度接近标准噪声温度,在对精度要求不高时,可以认为T1=T0,上式可以简化为:

上式中Y 由方程10 给出,是间接测量值,ENR 由噪声头给出。根据该等式可以方便求出接收机噪声系数。

两种测试方法的优缺点比较

利用方法一测试MAXIM 公司TD-SCDMA 手机接收通道噪声系数,先利用点频信号测量通道增益,输入点频信号为-105.6dBm ,频点2015.95MHz,MAX2392 的LNA 与混频器置为高增益高线性状态,VGC 电压调到2.63V,本振频点置为2015.8MHz ,这时我们在I 输出端测到-3.5dBm 的150KHz 点频信号,从而计算出整个通道增益为102.1dB 。现在关掉输入的点频信号,利用频谱仪测量I 端口在150KHz 频点处噪声功率谱密度,我们用的频谱仪是RS 公司FSEA,为使噪声测量结果精确,检波方式设为“SAMPLE”, 然后再利用“Maker Noise ”功能测试。我们测到噪声功率谱密度为-63.5dBm/Hz 。根据方程2 可以容易计算出整个通道的噪声系数为:

利用方法二测试MAXIM 公司TD-SCDMA 手机接收通道噪声系数,接上面的测量,保持MAX2392 工作状态不变。在上面测试中得到的I 端口150KHz 频点处噪声功率谱密度即为冷态噪声源时的噪声功率谱密度,现在仅需测热态时该频点处噪声功率谱密度。这儿我们用的是Noise/Com 公司的NC346A 噪声头,其在2G 频点处超噪比ENR=5.91dB。利用与方法一中同样的测试方法,我们测到热态时在150KHz 处噪声功率谱密度为60.4dBm。根据方程10 可以计算出Y 系数为3.1dB ,再根据方程15 我们可以计算出整个通道的噪声系数为:

比较上面两种方法得到的测量结果,仅差0.3dB,测试结果是比较理想的。这两种方法中,第二种测试方法更精确一些,原因是频谱仪在测量噪声功率谱密度时可能会有误差,频谱仪的中频滤波器的信号带宽与噪声带宽一般不等,有的频谱仪会给出一个修正值,有的则没有,如我们没有考虑该修正值,或仪表在读数上未做修正,则我们测到的噪声功率谱密度就可能有1dB 左右偏差,导致最终噪声系数1dB 左右偏差。如按第二种方法测试,因为我们仅需知道冷热噪声源时功率谱密度比值,即便在冷热两种噪声源时测到的功率谱密度有偏差,其比值依然是正确的,从而提高了噪声的测量精度。

关键字:接收机  噪声  测试 引用地址:手机接收通道噪声系数测试

上一篇:无线数据传输后端RFW-D100的原理与应用
下一篇:手机设计

推荐阅读最新更新时间:2024-05-07 15:53

硬件可靠性测试设计分析
从硬件角度出发,可靠性测试分为两类:   以行业标准或者国家标准为基础的可靠性测试。比如电磁兼容试验、气候类环境试验、机械类环境试验和安规试验等。   企业自身根据其产品特点和对质量的认识所开发的测试项目。比如一些故障模拟测试、电压拉偏测试、快速上下电测试等。   下面分别介绍这两类可靠性测试。   1 基于行业标准、国家标准的可靠性测试方法   产品在生命周期内必然承受很多外界应力,常见的应力有业务负荷、温度、湿度、粉尘、气压、机械应力等。各种行业标准、国家标准制定者给出了某类产品在何种应用环境下会存在多大的应力等级,而标准使用者要根据产品的应用环境和对质量的要求选定相应的测试条件即应力等级,这个选定的应力等级实质
[测试测量]
长电科技完成收购ADI新加坡测试工厂,全球化布局加速前进
2021年6月1日,中国上海——全球领先的集成电路成品制造和技术服务提供商长电科技,今日宣布,已正式完成对Analog Devices Inc.(以下简称“ADI”)新加坡测试厂房的收购,该厂房的测试人员将于近期陆续转入长电科技的生产环境中。自长电科技与ADI于2019年12月达成战略共识启动本次收购以来,双方依照协议积极推进相关工作,通过定期组织联合会议以及接管过程中的密切沟通与磨合,如期圆满完成收购。在双方良好的合作关系不断加深的同时,长电科技在新加坡的测试业务得以持续扩展,全球化经营布局快速稳步前行。 长电科技是首批在新加坡提供封装与测试的制造服务商之一,收购ADI新加坡测试厂房将进一步提升长电科技的市场竞争力。长电科技
[半导体设计/制造]
华为宣布其光伏逆变器SUN2000全系列通过中国效率认证测试
2015年5月14日,华为宣布,公司智能组串式光伏逆变器SUN2000全系列产品通过了第三方权威检测机构北京鉴衡认证中心测试认证,检测结果显示华为全系列逆变器产品的中国效率均超过98%。 其中,SUN2000-40KTL机型在所有参与测试的厂家产品中效率最高,中国效率高达98.41%,为目前所有通过测试的集中式、组串式逆变器中效率之首。 同时通过中国效率认证的华为同系列产品还包括SUN2000-33KTL, SUN2000-28KTL, SUN2000-20KTL, SUN2000-10KTL, 均被评定为中国效率最高等级A级。 华为负责人表示,逆变器中国效率高充分证明了华为产品技术过硬,但逆变器效率最高不是我们追求的目标,系统效
[新能源]
通用定位系统之GPS抗干扰接收机性能分析
1 引 言 作为一种通用的定位系统,GPS具有其他导航设备无可比拟的优越性,人们对其重视程度也日益提高。目前,GPS的相关研究主要涉及2个方面:一方面研究己方作战时能否有效利用GPS,另一方面研究如何破坏或干扰对方对GPS的正常使用。因此,研究GPS系统的抗干扰技术,有十分重要的意义。 目前,比较流行的GPS抗干扰技术主要有自适应调零(空域滤波)和空-时二维自适应滤波等方法;天线阵列主要有线阵和圆阵等阵型。 2 算法原理 2.1 自适应调零算法 如图1所示,阵列的阵元数为M,信号分别经过射频前端、A/D、I&Q采样后进入系统,这M个数据分别与M个权值相乘,求和后送GPS接收机。这里需要有1路作
[汽车电子]
通用定位系统之GPS抗干扰<font color='red'>接收机</font>性能分析
R&S的3G/4G互操作性测试包通过了NTT DOCOMO的验证
2013年11月18日,慕尼黑——来自罗德与施瓦茨公司(Rohde & Schwarz, R&S公司)的D-ATE测试包提供了针对无线设备,芯片厂商及测试站的内部认证实验室,用他们的产品与NTT DOCOMO的3G和4G网络进行互操作测试的综合的定制的测试方案。NTT DOCOMO同样在它的产品开发实验室里用这个测试方案。用户可以从R&S公司在移动通信方面广泛的专业知识和全球的销售与服务网络中受益。R&S公司同样提供测试用例,包括将来的LTE频带,LTE-A的载波聚合和VoLTE语言技术。 无线通信测试与测量的专业公司R&S公司与致力于智能生活的个人移动解决方案供应商NTT DOCOMO联合开发互操作测试包。现在,NTT
[网络通信]
全球首台3D武器打印机年末进入测试阶段
“维基武器”项目打印出的枪支(腾讯科技配图) 腾讯科技讯 (汤姆)北京时间11月26日消息,据国外媒体报道,一个自称“分布式防御组织”(Defense Distributed)目前正在进行一个名为“维基武器”(Wiki Weapon Project)的项目,这一颇具争议的项目可以设计出全球第一款从网络 下载 武器设计图,并能够完全利用3D打印机制造出来的设备。 日前,现年24岁、得克萨斯大学(University of Texas)法律系的大二学生同时也是该组织创始人的科迪-威尔逊(Cody Wilson)宣布,全球第一台可以打印塑料材质武器的3D打印机原型机即将在今年末正式进入测试阶段。 虽然“维基武器”项目可能
[半导体设计/制造]
全球首台3D武器打印机年末进入<font color='red'>测试</font>阶段
LTE测试技术的基础知识
长期演进(LTE)无线网络给测试设备供应商提出了若干挑战。3GPP定义的LTE空中接口,在下行采用正交频分多址(OFDMA)技术,在上行采用单载频频分多址(SC-FDMA)技术,且上下行同时采用了多输入多输出(MIMO)天线配置以最大限度地提高数据传输速率。对测试方案供应商来说,该空中接口提出了复杂的测量挑战。 LTE网络工作在约700至3,000MHz、带基于IP的数据分组、支持所有(语音、数据和视频)服务。它具有灵活的带宽分配特性,此外每个单元带宽都在1.5至20.0MHz范围内可调。通过采用OFDMA技术,借助包括正交相移键控(QPSK)、16态正交调幅(16QAM)和64态正交调幅(64QAM)在内的多种调制格式,能将可
[测试测量]
LTE<font color='red'>测试</font>技术的基础知识
ICI起毛起球测试仪的技术特点是怎样的
ICI起毛起球测试仪 ICI起球测试仪属通用起球测试体系,有2或4个测试头,可快速模拟正常穿着条件下一定时间内织物的起球情况。电子驱动装置,电子数字计数器及上样装置。 主要用途: ICI起毛起球测试仪_滚箱式起球仪适用于稀疏毛针毛梳织物及其它易起球织物的滚动摩擦起球试验,以评定织物在不受压力条件下的起球等级。 技术特点: 1、进口聚胺脂载样管、进口橡胶软木。 2、内衬橡胶软木采用可拆式设计,方便自行更换。 3、无触点式光电计数,液晶显示。 纺织类色牢度,刮擦,透气性,磨耗,燃烧,汗渍,物性,拒水性,防水,皮革,等测试标准推广,涵括测试仪器、实验消耗品,及专业测试标准、测试方法手册。主要经营的产品包括:颜色及色彩评价、显
[测试测量]
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved