毫欧姆电阻在汽车电子系统中的应用

最新更新时间:2013-05-28来源: 与非网关键字:毫欧姆电阻  汽车电子 手机看文章 扫描二维码
随时随地手机看文章

        对于电流检测,过去的二十年间两种不同原理的检测方法占据着这个市场,基于磁场的检测方法和基于分流器的检测方法。基于磁场的检测方法(以电流互感器和霍尔传感器为代表)具有良好的隔离和较低的功率损耗等优点,因此主要在驱动技术和大电流领域被电子工程师们选用,但它的缺点是体积较大,补偿特性、线性以及温度特性不理想。

  在过去的几年间,由于小体积的高精度低阻值电阻器的实用化,以及数据采集和处理器性能的大幅度提升,已经导致传统的基于分流器的电流检测方法的技术革新,并使新的应用成为可能,这在十年前,是无法想象的。

  车身电子控制系统的工作电流大多在1-100A之间,在特殊情况下(例如氧传感器加热),会有短时间200-300A的电流,车辆的启动电流甚至高达1500A。在电池和电源管理系统中,还有更极端的情况,车辆运行时持续电流为100-300A,而在静止状态,电流只有几毫安,这也需要被精确检测出来。

  基本原理

  根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比。当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的。然而如果电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就不容忽视了。我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低。

  通常,下面的公式适用于计算电阻两端的电压:

       U=RxI+Uth+Uind +Uiext+......

  其中Uth是热电动势,Uind 是感应电压,Uiext是PCB引线上微小电流引起的压降。

  其中与电流无关的因素而导致的误差电压能够直接影响到测量的精度,因此设计者应该了解这些因素并通过精心的电路板布局,尤其是选择合适的元件来降低相关的影响。

  很多种导电材料可以用来制造电阻,但是这样的元件并不太适合做电流取样。因为电阻阻值与温度,时间,电压和频率等参数有关,R=R (T,t,P,Hz,U,A,m,p,...)。

                                             表1 实际的电阻性能或多或少都和它的基础材料以及生产制程有关

        理想的电流检测电阻应该完全与这些参数无关,当然这样的电阻是不存在的。实际的电阻特性见表1,包括温度系数TCR,长期稳定性,热电动势,负载能力,电感和线性度,其中的部分特性由材料本身决定;部分特性由元件设计决定,还有一些参数决定于生产制程。

  早在1889年,德国Isabellenhuette公司发明了精密电阻合金锰镍铜(Manganin),其优良的特性奠定了精密测量技术的基础,后来该公司又发明了Isaohm 和 Zeranin,它们的电阻系数分别达到132mW xcm和29mW xcm,使电阻合金的家族更加完善,所有这些合金都极大地满足了全球对电阻材料的需求并且长期被精密电阻厂商成功应用。

  过去25年,为了应对基于磁场的电流检测方法的发展,Isabellenhuette公司致力于通过对分流器电阻进行物理优化进而扩展分流器的电流检测的量程。与此同时,半导体公司已经改进了运算放大器的诸多特性比如漂移,温度系数和噪声,这促使电子工程师可以在设计中选用毫欧级阻值的分流电阻,解决了大电流条件下的高功率损耗问题。但随之而来的代价是因为干扰和热电效应等因素而引起的相关误差也大大增加,因此降低寄生电感和抑制热电动势就显得特别重要。

  温度系数

  图1 是锰镍铜合金电阻的典型温度特性曲线,温度系数TCR单位为ppm/K,在20或25℃ 时,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),对于温度系数的定义,制造商标明温度的上限是必要的,举例说明在+20 -+60℃的温度范围内,测量系统经常选用TCR为几百个ppm/K 的低阻值的厚膜电阻器,图1中红色曲线表示TCR 为200 ppm/K的电阻器的温度特性,即使在如此小的范围内,+50℃的温度变化就足以导致阻值变化超过1%,这样的电阻是不能用于精确电流测量的,有些测量设备制造商甚至使用PCB走线的铜膜作为电流取样电阻,铜的TCR是4000 ppm/K(or 0.4%/K),2.5℃的温度变化就足以造成1%的误差。

                                                               图1 锰镍铜合金电阻的典型温度特性曲线

  热电动势

  当温度轻微升高或者降低时,在不同材料的接触面上会产生热电势,这种效应对低阻值电阻的影响非常重要,尽管通常情况下热电势数值非常小,但微伏级的热电势能够严重地影响测量结果。

  直到今天,电阻合金康铜依旧是绕线和冲压分流器(在片状材料上进行模压)的主要材料,尽管它有良好的TCR,但其对铜的热电势高达40mV/K。例如,使用1毫欧的分流电阻检测4A电流,10℃的温差就能产生400mV的电压差,相当于测量结果误差增大了10%。更严重的情况是,假如考虑到电阻尺寸,经常被忽略的珀尔帖效应(Peltier effect)可以通过接触面之间的相互加热或降温作用,将温差增大到20℃以上(非常极端的例子是焊接部位熔化)。即使被测电路工作在恒定电流状态下,由于珀尔帖效应(Peltier effect)而产生的温差也会导致有电压存在,显示电流是不恒定的。关断电流之后,在温差消失之前,测量结果会显示有明显的电流存在,根据设计和阻值的不同,电流误差能有几个百分点或达到几个安培。而前面提到的精密电阻合金的热电特性和铜非常接近,金属和金属的接触面不会产生热电压,设计者甚至可以忽略珀尔帖效应(Peltier effect)。比如使用一只0.3mW的电阻,产生的热电压小于1mV,在关掉100A电流的时侯,热电势产生的电流小于3mA。 

       长期稳定性

  对于任何传感器来说,长期稳定性都非常重要。甚至在使用了一些年后,人们都希望还能维持早期的精度。这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变。要使测量元件满足这些要求,可以使用同质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态。这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻。

  图2 是表面贴装电阻的典型长期稳定性曲线,可以看出在140℃下老化1000小时后阻值只有大约-0.2%的轻微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的。阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的。

                                                             图2 表面贴装电阻的典型长期稳定性曲线

  四端子连接

  在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压。如图3所示,一个四端子的连接将允许测量系统实际用到的阻值为R0,而普通的连接的阻值为R0+2xRCu 。例如,10 mm长0.3 mm线径的铜线会增加2.4 mW的RCu阻值,4mm长0.2mm宽 35mm厚度的PCB引线的RCu阻值是10mW。

                图3 一个四端子的连接将允许测量系统实际用到的阻值为R0,而普通的连接的阻值为R0+2xRCu

  这些例子都表明有缺陷的电阻结构或者布线不合理都会导致非常大的误差,对于10毫欧两端子电阻器,铜连接线占了总阻值的24%,甚至很短的4mm的PCB布线已经使阻值翻倍。电阻材料和铜端子焊接前的结合面清理工艺可以减少端子的附加阻值,但是TCR的影响依然存在。

  如图4描述的实例中,铜的比例小到只有2%(相比前面24%的例子),然而TCR却从接近0升高到80ppm/K。对于这样结构的低阻值电阻器,如果在在技术文档中只列出合金材料本身的TCR绝对是不可以被接受也是没有价值的。

                                      图4 四端子连接使得测量系统可以从高可靠性的感测元件直接获取信号   由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能。但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线。

  高负载功率

  因为电阻材料的导热性比铜要差,并且大多数电阻使用厚度在20-150mm之间的蚀刻结构的合金箔,因此无法通过电阻材料到端子散热。解决方案之一就是用一层薄的导热良好的粘合剂把电阻合金箔粘合到同样有良好导热性的底板材料上(铜或铝)。这种结构可以有效地将热量传导给周围环境,保证了电阻器具有非常低的热内阻(典型值为10-30K/W)。(ISA-PLAN系列的电阻使用该技术制造,译者注)

  这种结构的电阻可以在非常高的温度下满负荷工作,如图5所示在很高的温度下才出现功率折减;同时,电阻材料的温度可以维持在较低水平,这就可以有效改善电阻的长期稳定性和因温度而引起的阻值变化。

                                                   图5 由于自身的低热内阻,只有在高温下才出现功率折减

  对于使用复合结构的极低阻值的电阻器,电阻合金的横截面积和机械强度很大,所以没必要使用底板,这也就意味着电阻材料具有足够低的热内阻,例如对于1毫欧的电阻,热内阻大约10K/W,但是100微欧的电阻,热内阻只有1K/W了。(ISA-WELD系列的电阻使用该技术制造,译者注)

  低电感

  在当今的很多应用中需要测量和控制高频电流,分流器的寄生电感参数也得到了大幅改善。表面贴装电阻器的特殊的低电感平面设计和合金材料的抗磁特性,金属底板,以及四引线连接都有效降低了电阻器的寄生电感。

  然而,电路板上的取样端子和电阻组成了一个环状结构,为了避免其间因电流产生的磁场和外围磁场而形成的感应电压,需要特别强调要使取样的信号线形成的区域越小越好,最理想的是微带线设计(见图6中的绿线),例如,与放大器连接的两条取样信号线要设计得尽量靠近或者最好在PCB的不同层面之间平行布线,最差的设计(见图6中的红线)结果是天线效应会远远超出电阻本身实际电感的影响。

                                  图6 四端子连接的电路构成一个天线回路,对EMI形成的感应电压很敏感

        低阻值

  四引线设计推荐用于大电流和低阻值应用。通常的做法使用锰镍铜合金带直接冲压成电阻器(图7),但这不是最好的办法。尽管四引线电阻有利于改进温度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受的功率损耗和温升。此外,电阻材料很难通过螺丝或焊接与铜连接,也会增加接触电阻以及造成更大的损耗。

                                                              图7 用锰镍铜合金带直接冲压成电阻器

  而图8的方法,使用复合材料冲压电阻会大大地减少误差,总阻值的增加会减少到不足10%,设计者也可以使用被认可的铜-铜连接技术进行焊接。

                                                          图8 用复合材料冲压电阻会大大地减少误差

  汽车应用说明

  出于成本和小型化的原因,汽车电子中检测100A以下的电流越来越多地使用SMD封装的精密取样电阻,阻值要求低至300微欧,在汽车电子应用中,Isabellenhuette公司可以提供SMx,LMx,VMx和BVx系列的产品,所有这些产品都是使用两端子设计和优化的物理结构,选择合理的PCB布线方式,两引线设计完全可以消除端子和焊点接触电阻的影响并达到四引线的检测精度。

  对于电流检测在燃油直喷系统,变速箱控制,前灯控制,车窗控制和引擎管理模块中的应用,一个使用铜基板来实现散热和电气连接的合理架构,能够完美地秉承锰镍铜合金的优良特性,非常高的持续和脉冲功率,低于0.1nH的电感值,5 mW~5W的阻值范围,从1206,2010,2512到2817的标准外形尺寸,0.5~3W的负载能力,高达0.5%的精度,以及低至13 K/W的热内阻。

  两引线设计的倒装系列提供了低至1mW的阻值,当阻值低于3mW时,这种设计不使用基板,对于更高的阻值,绝缘的铝质基板覆盖在上面做为载体和热传导介质。这个系列的阻值是从1 mW到 0.5W,封装尺寸是2512, 2010,1206和 0805,精度1.0%时,负载从2W到0.25W,热内阻可以低到15K/W。被广泛用于点火控制模块,变速箱控制,发动机管理模块,车窗升降器等。

  典型应用也包括开关电流调节器和有特殊要求的PWM功率控制器,例如,最大工作电流100A的散热器风扇;工作在+140℃的环境温度的风扇;要求工作在EMV Level 5的电子油泵或者工作效率高达94~98%的电子水泵等应用都要求对马达进行保护,也适合使用表面贴装电阻。用ISA-WELD技术制成的合金电阻,适用于PCB、DCB、MIS基板或者含引脚支架键合的应用,阻值范围从100mW到4 mW,1%精度下额定功率到5W,热内阻低至2K/W。



        数据采集系统

  汽车电子中有一种应用的需求在不断增加,它需要对数百安甚至上千安培的电流进行大动态,高精度和高分辨率的测量,同时对于毫安级的电流也要求有极高的测量精度和分辨率,比如乘用车,卡车和混合动力汽车的电池和电源管理系统。

  ISA-ASIC就是针对这种应用而推出的解决方案,包括一个完整的4通道的数据采集系统,它具有16比特分辨率和许多特殊的功能,这种完全不需要补偿的数据转换器,与复合材料制成的低阻值分流器电阻构成了接近理想的电流传感器。一方面,它可以实时,线性,大动态,高精度地测量高达1500安的电流,另一方面,在低采样速率情况下,还能达到几毫安的分辨率。 ISA-ASIC只需要±5V/3mA的单电源即可工作,被测信号可以是双极信号甚至可以低于电源电压,除了可以测量电流外,还能同时测量温度和电压。ISA-ASIC是目前汽车电池和电源管理系统的最佳选择。

  用一只特殊的2mW电阻,ASIC系统能够测量高达10,000A的持续电流,分辨率小于1A,ISA-ASIC的卓越性能远远超越工程师的期望。

关键字:毫欧姆电阻  汽车电子 编辑:探路者 引用地址:毫欧姆电阻在汽车电子系统中的应用

上一篇:单通道13通道无线电遥控开关电路
下一篇:如何选择锂离子充电管理IC

推荐阅读最新更新时间:2023-10-17 15:43

安全气囊电子系统测试原理及方案
安全气囊指安装在汽车上的充气软囊,使用在车辆发生撞击事故的瞬间弹出,藉以达到缓冲的作用,保护驾驶和乘客的安全。气囊绝对要与安全带两者配合使用,才能得到防护效果。   作用原理:   当撞击感知器检测到撞击时,相关控制系统会判断撞车程度决定是否触发充气装置,通常由汽油或炸药等气体发生剂配合点火装置组成充气模块。为了废弃处理上的安全,通常只高温引爆气囊。   汽车的安全气囊内有叠氮化钠(NaN3)或硝酸铵(NH4NO3)等物质。当汽车在高速行驶中受到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊。(叠氮化钠分解产生氮气和固态钠;硝酸铵分解产生大量的一氧化二氮(N2O)气体和水蒸气。由于撞击过程时间非常短,一般
[汽车电子]
安全气囊电子系统测试原理及方案
聊聊汽车电子的可靠性问题(一)
供应链的变化,对共享数据的抵制和技术的未知性加剧了持续的不确定性。 确保 汽车电子 产品的可靠性已经引发了整个半导体供应链的争夺,并且发现了一系列数据不足,缺乏明确定义的标准以及不一致的专业知识水平的问题。   可靠的功能安全性,可在恶劣环境中使用18至20年,或在自动出租车或卡车上持续使用,这是一项艰巨的任务,需要在人工智能,激光雷达,雷达,车辆和车辆通讯等领域取得工程技术进步。它还需要管理一个全球供应链,这个供应链由初创公司,没有汽车经验的芯片制造商以及在先进电子方面经验不足的汽车供应商组成。      图1.系统验证应确定系统出于正确的原因做正确的事情。   此时,没有人确切知道7nm AI(人工智能)系统的可靠性
[汽车电子]
聊聊<font color='red'>汽车电子</font>的可靠性问题(一)
429个厂家聚焦十大评选 30强大关鹿死谁手?
   今年上半年,中国汽车 技术 研究中心发布了上半年国产汽车产销报告,国产汽车产量依旧稳居全球第一。车市的欣欣向荣,必然带动着汽车后市场的持续井喷,中国 汽车电子 产业随着中国汽车产业一起进入快速发展期。   专家预计,到2015年,我国汽车电子产业产值将达到5000亿元,在国民经济中的地位将日趋重要。汽车后市场呈现高速发展,出现新一轮的“井喷”现象。广州与深圳作为汽车电子当之无愧的前方市场,一大批汽车电子厂家正异军突起、风生水起,竞争尤为激烈。在优胜劣汰下,一些山寨厂家正在逐渐地被淘汰,一批品牌意识强、自主创新的企业正在崭露头角,保持快速发展,引领行业发展。   10月20日,自慧聪汽车电子网“十大”评选吹响集结号,正
[传感器]
分布式汽车车身控制系统设计
   引言   随着汽车电子的迅猛发展,现代汽车中电控单元逐渐增多,这些电控单元大致可分成三类:动力传动装置控制(如发动机控制和变速控制),底盘部分控制(如汽车防抱死系统ABS)和车身控制。其中车身控制系统主要是为了提高驾驶的方便性和乘坐的舒适性。车身控制系统涵盖范围广,包括灯光控制系统,车门控制系统,座位控制系统,气候(空调)控制系统,仪表盘显示等。本文选取灯光、雨刷及底盘部分电磁阀这些控制节点来说明车身控制系统如何实现分布式控制方案。   系统结构   该系统要实现的功能如下:   * 控制汽车上所有车灯。   * 控制雨   刷低速、高速、间歇式工作。   * 控制与取力器、全轮驱动、轮间和轴间差
[嵌入式]
如何高效打造汽车电子的“神经网络”
当代汽车的创新70%来源于汽车电子系统的创新。 伴随着新能源汽车的崛起,电子产品的成本在汽车中比重日益加高。根据盖世汽车网的统计,目前紧凑型车型、中高档车型、混合动力车型及纯电动车型汽车电子成本占比分别为15%、28%、47%、65%。预期到2030年,电子产品在汽车中的平均比例将达到50%。 汽车中的电子化程度越高,对信息传输量的需求就越大,汽车网络化的趋势就越明显。车载的各种电子设备在赋予汽车更多功能的同时,也导致了汽车电子系统的复杂化。在各电子单元之间进行数据共享和功能协调已经变得举足轻重。现有的做法就是利用汽车总线将汽车中各种电控单元、智能传感器、智能仪表联接起来构成汽车内部局域网,在各单元独立运行的同时,进行功能的统一
[手机便携]
飞思卡尔推新款8位车用MCU
飞思卡尔(Freescale)推出了专为入门级仪表板及暖气、通风与空调控制(Heating,Ventilation,and Air Conditioning,HVAC)所设计的S08微控制器系列。新款的8位S08LG32微控制器内建液晶屏幕(LCD)硬件驱动电路,能够为新兴汽车市场中(如中国和印度)广受欢迎的平价车款提供超值的LCD模块应用解决方案。 该微控制器可用在入门车款当中,也适用于二轮/三轮车辆,包括摩托车与轻型机车。目前S08LG32系列涵盖五款车用的5伏特微控制器,具备多种闪存容量(最高32KB)以及从48到80接脚的封装选项。芯片内含的LCD硬件驱动电路可支持高达296个节点区段的显示(8×37或4×41的LC
[单片机]
下个月掏不出上亿美金,乐视法拉利就是“歇菜”的下场?
据外媒报道,之前有消息称 法拉第 未来位于美国内华达州的汽车生产工厂建设遇到麻烦。目前的情况表明,法拉第未来的处境比预期的更糟糕。   Buzzfeed News、Jalopnik和The Verge的报道都表明,法拉第未来的主要问题是缺钱。除高管流失外,法拉第未来还有大量没有支付的账单,面临供应商和地产出租方的诉讼。法拉第未来急需数亿美元现金,如果在下个月的国际消费电子展后不能获得更多资金,它可能将在2月份破产。   参展国际消费电子展,可能是法拉第未来最后一次展示其汽车产品。Buzzfeed News一名线人报料称,法拉第未来希望展示5款原型车,其他消息人士称,法拉第未来展示一辆“完美、可行驶的成品汽车”有困难。   法拉第未
[嵌入式]
从无到有—如何开发汽车电子电气架构
电子电气架构的开发,需要涉及整车开发中的大部分系统、功能与部件,横跨软件开发、硬件开发、机械设计、材料科学、生产工艺、人机交互和造型设计等各个工程领域,而且各个车企都有自己的独特之处,加之智能网联领域的迅速发展,新的挑战与应对方法在不断出现,任何一本书都无法详尽地描述电子电气架构的所有开发活动…… 然而,万变不离其宗,当抛开各种细节之后,其本质可以被视为系统工程理论在 汽车电子 电气系统开发中的应用。 电子电气架构专家侯旭光先生在《智能汽车:电子电气架构详解》一书中,将汽车电子电气系统开发方法进行了详细阐述和简化总结(如下7项);本文摘取书中片段进行分享,希望给大家以启发~ 按照需求工程的方法收集、确认和管理需求。将需
[汽车电子]
从无到有—如何开发<font color='red'>汽车电子</font>电气架构
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved