1 实验
1.1 电解质的配制及其电导率和粘度的测定
实验使用的溶剂是DOL、DME、THF及电解质盐高氯酸锂(LiClO4)(电解质盐纯度>99.9%),从Aldrich Chemoical Indus-try购买。配制电解质前,溶剂经纯化和脱水处理,电解质盐在120℃下真空干燥24 h。电解质在气氛为氩气的干燥手套箱中配制,锂盐浓度均为1 mol/L。使用DDS-12A数字电导率仪测试电解质电导率,粘度的测量使用乌氏粘度计(北京产),测试温度均为18℃。
1.2 电极的制备
按单质硫:乙炔黑:LA132=60:30:10的质量比制备硫电极。首先将单质硫、乙炔黑和LA132球磨混合均匀,然后加入一定量水和正丙醇的混合溶剂(体积比为水:正丙醇=4:1)球磨均匀,制成正极浆料,采用刮刀涂布的方法将浆料均匀地涂于18 μm厚的铝箔集流体上,经过烘干(60℃真空干燥12 h)、压片、分切等工艺过程制成(70+3)μm厚电极。
1.3 电化学性能测试
以锂箔为负极,聚乙烯(PE)/聚丙烯(PP)复合膜为隔膜,硫电极为正极,在手套箱中组装模拟电池。使用LANDBTI-10型蓝电电池测试系统进行恒流充放电测试,电压窗口为1.5~2.6 V。充放电电流密度分别为1.0 mA/cm2和0.2mA/cm2。以金属锂为辅助电极和参比电极,组装三电极体系,用Solartron公司的1280Z电化学工作站进行循环伏安测试,扫描范围为1.5~3.0 V,扫描速度为0.1 mV/s。所有数据均由计算机自动记录,温度为室温。
2 结果与讨论
2.1 粘度和电导率
溶剂是影响电解质性能的关键因素之一。为配制高电导率、低粘度且使用温度范围宽的电解质,需要选择介电常数高、粘度低、沸点高、凝固点低以及具有稳定化学性质的溶剂体系。为了使硫电极具有电化学活性,所选溶剂要对硫及其还原产物具有一定的溶解性,据此配制了表1所示的三种电解质。
从表1可以看出,电解质1与2比较,电解质1的粘度稍大,虽然DME比THF粘度值大,但可能是与DME具有较强的离子鳌合能力、对锂盐具有较强的溶解度能够减小Li+的Stokes半径有关;对比2、3两种电解质发现,电解质2的粘度值较大,这与DOL的粘度较高有关;对比1、3两种电解质发现,电解质1的粘度值较大,这主要与DOL的粘度较高有关;在1、2、3三种电解质中,电解质3具有较高的电导率和较低的粘度,符合电池对电解质的要求。
2.2 溶剂的影响
2.2.1 电池的充放电性能
图1所示是硫电极在三种电解质中的首次放电曲线,各曲线表现出一定的相似性。在2.3 V和2.1 V处三条曲线均存在电压平台,说明硫电极在三种电解质中的放电机制可能相同,为典型的单质硫或有机多硫化物放电机制。第一个放电平台对应长硫链的断裂,硫被还原为可溶解的多硫化物。第二个放电平台则对应多硫离子进一步还原生成S2-的过程。其中低电压平台容量是硫电极放电容量的主要来源,对应的容量贡献为总容量的65%以上。因此,该平台容量大小和电压的高低是衡量电解质性能好坏的主要依据。在不同溶剂的电解质中,其放电容量的大小和电压平台的高低不同。对比图1和表1可知,1号至3号电解质的粘度逐渐减小,硫电极在这三种电解质中放电时的低电压平台依次升高,这说明电解质盐固定时,硫电极低电压平台的高低和电解质的粘度大小相关。硫电极在1号电解质中放电时,虽然表现出最高的放电比容量,达1 034 mAh/g,但与在3号电解质中相比,低电压平台的比容量小、电压低。硫电极在3号电解质巾放电时,表现山了较高的放电比容量986 mAh/g,低电压平台高且平稳,曲线饱满,具有较好的放电性能,这应该与3号电解质具有相对较低的粘度和相对较高的电导率有关。
由图2可以看出,在放电电流密度为1.8 mA/cm2时,电解质3的放电容量和电压平台比其它两种电解质的要高。可见,使用低粘度的电解质3放电过程中溶解的多硫化离子能较快地扩散,不会造成多硫化离子在正极区的累积,在电池充放电过程中产生的极化度小。在放电电流密度为1.8 mA/cm2时首放比容量为844 mAh/g,说明电解质3具有很好的大电流性能。
2.2.2 电池的循环性能
图3为三种电解质组装的锂-硫电池存放电电流密度为1.8 mA/cm2时的循环性能曲线。由图3可知,与首次放电比容量相比,第二次放电比容量显著降低,随后的多次循环容量衰减比较缓慢,曲线趋于平缓。容量衰减源于硫硫键断裂产生的多硫离子与负极锂反应,形成了Li2S钝化层覆盖在电极表面,消耗了部分硫。Li2S钝化层是Li+的良好导体,它的形成不会影响反应的正常进行,但是在充电过程中,这部分损失的硫不能被氧化再形成硫硫键;同时隔膜阻塞、自放电、活性物质发生团聚及在电解质中过饱和沉积等现象也会造成循环性能下降。图中电解质1所组装的电池和电解质3所组装的电池第二次放电比容量比第一次放电比容量高,特别是在大电流密度放电时更容易产生。比较合理的解释有两种:一是由于放电电流密度较大,放电时间短,在短时间里电解质还未充分浸润到正极的内层,从而导致第一次放电容量低于第二次放电;另一种解释为,第一次放电时,由于大电流密度放电时间短,放电电流大,正极表面很快形成一层多硫化物的堆积层,锂离子来不及扩散到正极内层与硫反应,导致活性物质硫的利用率低。而在第二次及以后的放电过程中,由于电解质的充分浸润以及电池更趋于稳定状态,则不再出现后一次放电容量比第一次放电容量高的现象,当然前提条件是电池必须正常放电。从图3可以看出,电解质3所组装的电池,在大电流密度下循环性能最好,20次循环后比容量为709 mAh/g,这可能因为该电解质的粘度较低,而且没有电解质2中充电过程中硫溶解性的问题。电解质1所组装的电池,20次循环后比容量在650 mAh/g,也展现了这种电解质良好的循环性能,在大电流循环性能方面也比电解质2好。
2.2.3 电池的充放电效率
图4为三种电解质在电流密度为0.6 mA/cm2下的放电的充放电效率曲线,由图4可知,电池的充放电效率都是随着循环次数的增加而增大,最后趋于平稳的。前几次的充放电效率都比较低,这是由于前几次电池还没有达到稳定状态,而一部分硫放电后生成不可逆放电产物Li2S,Li2S在电极表面形成不稳定钝化膜,导致过充现象严重,所以效率很低。当放电电流密度为0.6 mA/cm2时,电解质3的充放电效率超过了80%,而电解质1和电解质2明显要低一些。而就电解质1和电解质2来说,电解质2要比电解质1好。
2.2.4 循环伏安测试
由图5可以看出,在这三种电解质中,还原峰在2.4 V和2.0 V两处分别对应了放电曲线中的两个放电电压平台,在2.4~2.5 V之间出现两个氧化峰,也分别对应充电过程中出现的两个充电电压平台。2.0 V的还原峰电位逐渐正移,峰形逐渐变得尖锐,这说明硫在高电导率电解质中的电极极化较小,而电导率只是影响电极极化的一个因素,还可能与电极的表面状态的变化等因素有关。
2.2.5 电池的交流阻抗测试
由图6可以看出,采用电解质2和电解质1组装的电池阻值随放置时间的增长而增大,电解质2要比电解质1的增长幅度大。而电解质3的阻值随放置时间的增长基本上没有太大的变化,电解质3的阻值一直保持在50~80 Ω之间,说明其内阻较小,充放电时产生的极化小,这是因为电解质3有着良好性能。电解质2放置一天后,其阻值达到了280 Ω,说明这种电解质组装的电池其内阻一直在增大,而且幅度相对较大。电解质1的溶液电阻也随放置时间增长而增大,但是增长幅度很小。
3 结论
硫电极在不同电解质中的电化学性能测试结果表明,溶剂组分对硫电极的电化学性能具有一定的影响。硫电极低电压平台的电位和电解质的粘度密切相关。当电解质为1 mol/LLiClO4/(DME+THF)(50:50,体积比)时,硫电极有很好的大电流性能,首放容量高达860 mAh/g,当放电电流密度为0.6mA/cm2时,电解质3的充放电效率超过了80%。