基于震前电磁波异常的客观事实,地震预报中,利用电磁辐射异常所具有的短临反映能力,能够正确采集临震电磁信息,从而在地震预报起着重要作用。本文提出一种基于ADS1255的地震信息数据采集模块的解决方案。
2 系统硬件设计
该地震信息采集模块的主采集控制器选用高性能数字信号处理器(DSP)TMS320F2812。该器件特别适用于大批量数据处理的测控场合。在地震信息采集模块中,TMS320F2812主要负责控制ADS1255以及滤波处理相应的数据。图1为地震信息采集模块设计框图。
由于该信息采集模块采用SPI总线与A/D转换器通信,因此,当需扩展为4通道时,只需用TMS320F2812的4个I/O端口作为ADS1255的片选端即可,而SPI的时钟线和数据线均可共享。为了提高数据的可靠性与精度,需对A/D转换器传输的24位数据进一步滤波。考虑到滤波时DSP需处理大量数据,因此通过TMS320F2812自带的外部存储接口扩展512 KB的RAM,作为该系统程序运行的数据空间。此外,TMS320F2812的串口A与串口型的GPS模块相连,用于整个信息采集模块的授时时钟。为使A/D转换器采样准确可靠,DSP与A/D转换器采用独立的电源系统,SPI信号线均需通过隔离电路进行隔离。
2.1 ADS1255电路设计
ADS1255是一款高性能的A/D转换器,其内部集成多路选择开关(MUX)、可编程增益控制器(PGA)、四阶△-∑调制器、可编程数字滤波器等,具有极低的噪声,可满足高精度的测量要求。ADS1255能够接收输入幅度为0~5 V的信号,若超出该范围,器件将损坏,因此,若需采集的信号不在该范围内,首先需将其线性变化为0~5 V之内,才能输入到ADS1255。
图2为ADS1255的应用电路。输入信号首先经过由R3、R4、R5组成的电阻网络,可将-10~+10 V的信号转换为0~5 V。ADS1255可配置成一个差分输入或两个单端输入,因此,该设计采用差分输入方式测量单端输入。其实现方法比较简单,需采集的信号输入到ADS1255差分输入的正端AIN0,参考电压2.5 V输入到差分输入负端AIN1,同时需设置ADS1255内部的PGA=2。这样可提高ADS1255的输入动态范围。
2.2 参考电压电路设计
该信息采集模块采用独立外部参考电压器件REF5025提供2.5 V的参考电压,该器件具有低噪声,低漂移,高精度等特性,特别适用于16位以上的A/D转换系统。图3为基于REF5025的参考电压缓冲电路。
2.3 SPI接口隔离电路的设计
该信息采集模块的隔离电路采用专门的隔离器件ADUM1402实现,该器件是ADI公司生产的基于磁耦隔离技术的通用型四通道数字隔离器。磁耦隔离技术是一种基于芯片尺寸的变压器隔离技术,而非传统的光电耦合器所采用的发光二极管与光敏三极管的组合。由于其取消了光电耦合器中影响效率的光电转换环节,因此其功耗仅为光电耦合器的1/10~1/6,同时具有更高的数据传输速率、时序精度和瞬态共模抑制能力。图4为ADUM1402的应用电路。
3 采集模块软件设计
由于ADS1255采用的是△-∑结构,因此其上电后就开始以FCLK/4的固定速率调制输入信号,然后以默认30 kb/s(晶振为7.68 MHz时)的速率更新其内部的转换结果寄存器。上电后,TMS320F2812首先要对ADS1255进行相应设置,如设置PGA,ADS1255转换结果输出速率,选择输入通道号,以及当完成上述设置后需要进行相应的自我校验。图5为该地震信息采集模块的主程序流程。该地震信息采集模块在进行多通道数据采样时,首先切换到通道1并进行第1次转换,等到转换结束后,再次启动转换,等待转换结果,读取ADC结果。然后切换到通道2并进行第2次转换,操作过程与通道1相同,依次再切换到通道3,4,…最终完成所有通道的转换。系统对ADS1255主要操作有:设置其寄存器,读取其寄存器以及向其发送命令(包括读取转换数据的命令)。
4 结束语
将该模块实际应用于临震电磁信息采集系统中,采用4片ADS1255采集地震计传输的超低频的东西、南北方向信息以及点频的东西、南北方向地震信息,DSP轮流采集上述4通道信号,经过滤波后通过串口发送给上位机显示。在实际应用ADS1255时,需要注意以下问题:
(1)每次设置过ADS1255的数据输出速率、改变PGA或者改变输入通道后均需要发送校验命令给ADS1255,以此消除ADS1255的偏移误差和增益误差。当每次上电以后,建议发送ADS1255自我校验命令。
上一篇:利用高性能同时采样ADC降低高级电力线监测系统的成本
下一篇:实现低于/高于75W应用的绿色适配器解决方案
推荐阅读最新更新时间:2023-10-17 15:45
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC