一种程控高压充电系统设计

最新更新时间:2013-06-20来源: EDN关键字:程控  高压充电  系统设计 手机看文章 扫描二维码
随时随地手机看文章
充电系统广泛应用于物理试验、开关技术等研究课题。早期的充电系统主要是通过手动调节调压器来改变高压电源的输出,充电过程易受操作人员主观影响,稳定度低,难以实现整个实验过程的自动控制;部分系统采用了电动调压器,通过控制电机带动调压器进行电压调节,调节过程中滞后现象明显,且电动调压器体积功率普遍较大,不利于小型充电系统使用;基于串联谐振的高频高压充电电源体积小、效率高,但成本高,线路复杂;充电设备多用于高电压、大电流的场合,瞬时放电产生的空间干扰和地线干扰相当严重,对示波器等精密测试仪器有一定的影响。因此,研制稳定可靠的程控高压充电系统很有必要。

1 系统概述

某试验需要一台充电设备,要求单极性充电,充电电压-20~-80 kV连续可调,充电时间小于100 s,储能设备为电容器,充放电过程不允许人员在场,所有操作必须在屏蔽间完成。

2 系统设计

程控高压充电系统的硬件结构如图1所示。主控部分位于屏蔽间内,包括触摸屏和信号转换电路,实现高压设置,充电启停,接地泻放等控制命令的发送,以及充电系统工作状态和实际电压的显示;充电系统位于实验间,包括信号转换,PLC,调压模块,高压采样等,通过接收主控部分的控制命令,完成储能电容充电等动作。为实现屏蔽间和实验间的完全隔离,采用光纤作为数据传输介质。
2.1 触摸屏

屏蔽间内除了放置程控高压充电系统的主控部分,还包括操作台,示波器等其他物理实验需要的仪器设备,从而要求程控高压充电系统的主控部分体积小,易于观测,操作简便。用触摸屏作为监控系统的人机界面,除节省PLC的I/O点数之外,还提高了生产监控能力,简化了操作面板。综合比较后采用IO英寸的触摸屏作为主控设备,并嵌入操作台,和其他仪器设备的操作窗口位于一个平面,方便操作人员的使用。图2为触摸屏控制界面,具有指针和数字两种实际电压显示方式,通过键盘输入设置电压,控制按键按照功能互锁,避免误操作。需要注意的是,为了有效提高触摸屏和PLC之间的数据传输效率,在触摸屏编程过程中,最好将使用的数据区设置为一段连续的PLC寄存器地址。

2.2 充电控制

PLC是整个充电控制的核心,充电开始后,首先输出一个0~10 V的直流信号到调压模块,控制调压模块输出一个0~220 V交流电压到高压电源,经过高压电源升压整流后给储能电容充电,再通过高压侧并联的高压分压器,把0~-80 kV的高压信号转换为0~-8 V的低压信号,隔离调理后送到PLC,PLC获取后和设置电压对比,调整输出的直流信号,实现充电过程的闭环控制。但是,从PLC输出直流信号到高压电源稳定输出高压,有一个滞后时间,如果采用简单闭环控制,会造成控制过程失调,高压输出震荡,无法达到指标要求。因此,系统使用了PID控制方法。

PID调节的实质就是根据输入的偏差值,按比例、积分和微分的函数关系进行运算,其运算结果用以输出控制,从而减小时滞,防止超调,获得稳定的输出数据。但由于被控对象的工作过程具有多样性,使得PID参数的正确获取较为复杂,需要通过反复调试,获取尽可能多的实验数据后确定。PID控制在PLC中既可用PID硬件模块实现,也可用软件实现,应根据实际的控制系统规模以及成本等因素选取。本系统采用的是S7-200系列的PLC,实际编程中直接使用PLC内部的PID控制指令,主要解决高压过冲和振荡两个问题。

单相交流调压模块集同步变压器、相位检测电路、移相触发电路和输出可控硅于一体,当改变控制电压的大小,就可改变输出可控硅的触发相角,即实现单相交流电的调压。考虑到电网电压的波动和负载在启动时一般都比其额定电流大几倍,及晶闸管芯片抗电流冲击能力较差等因素,在选取模块电流规格时应留出适当裕量。阻性负载的模块标称电流应为负载额定电流的2倍;感性负载的模块标称电流应为负载额定电流的3倍。另外,调压模块的过电压能力差,若模块内部未自带过电压保护线路,可以外接阻容吸收回路或压敏电阻进行保护。

光电隔离模块的作用是将高压地和控制地分开,从而保护后端的模拟采样等控制线路。选用时要选择合适的频带范围和驱动能力,确保不影响正常的数据传送。

按照模拟量隔离模块的接线方式,其输入端等效电阻和高压分压器的低压臂电阻并联,当输入端等效电阻不能明显大于高压分压器的低压臂电阻时,就会影响到高压分压器的分压比。除了选择较大输入阻抗的隔离模块外,还可以使用运放设计中间电路,利用其高输入阻抗的特性进行匹配,或者通过软件校正。

2.3 信号转换电路

S7-200PLC支持多种通信协议,比如点到点接口协议(PPI)、多点接口协议(MPI)、Profibus协议、用户定义的协议等。触摸屏和PLC之间采用RS 485协议通讯,为避免实验过程中储能电容放电产生的高压脉冲干扰通过串行总线耦合到屏蔽间内部,设计了针对RS 485协议的光电/电光转换电路,实现串口数据的光纤传输。由于RS 485属于半双工协议,标准的协议转换芯片都需要控制数据流方向,一般采用的方式是用一根信号线来控制,实现收发的切换,这种方式不但需要增加电路,还需要进行编程控制。本系统采用的思路则巧妙的由硬件本身完成了接收和发送的自动转换,电路简单,抗干扰能力强,可靠实现了RS 485信号和TTL信号的转换。

1414T和2412T是一对标准的光电收发器件,最高数据传输速度为5 Mb/s,传输距离超过1 km,完全满足RS 485信号的传输要求。对于1414T光发射器必须提供足够的正向驱动电流才能发出所需光功率,而2412T是集电极开路输出,通过一个上拉电阻即可获得光信号经光电二极管转换成的电信号。根据光电收发器件的电器特性,增加必要的驱动、反向等电路后,系统能够可靠进行TTL信号的光纤传送和转换,从而实现RS 485信号的长距离光纤传输。电路原理图如图3所示,其中Q1应根据使用的串口通讯速度选取合适的开关管,并根据光纤的长度来调节R3的阻值,以改变光发射功率,确保光传输稳定可靠。

3 结 语

此程控充电系统完全满足设计要求,已经应用于多项物理实验,抗干扰能力强,可靠性好。简单修改触摸屏和PLC程序,可以配合不同指标的高压电源组成各种充电系统,通用性好,使用范围广。通过修改通讯协议,还可以用计算机替代触摸屏,将充电系统纳入整个实验控制系统进行统一管理。系统中使用的RS 485光传输电路,可以广泛用于高压大电流场合,有效提高主控设备的抗干扰能力。
关键字:程控  高压充电  系统设计 编辑:探路者 引用地址:一种程控高压充电系统设计

上一篇:罗姆开发出同时实现业界最高电压与低电阻的双电层电容器并实现量产
下一篇:电阻式粮食水分测定仪的设计

推荐阅读最新更新时间:2023-10-17 15:45

软件可辅助电源系统设计
作者:凌力尔特公司电源产品产品市场总监Tony Armstrong 标准串行数字总线 (比如:I2C) 的使用实现了与具数字功能的 DC/DC 转换器之间简单而高效的往返通信,而诸如 PMBus 等新兴标准则有助于简化组件的互操作性。重要的稳压器参数 (包括启动特性和定时、输出电压和电流限值、裕度调节规范以及过压和欠压监控限值) 皆可直接地进行数字式编程,而非利用电阻器和占用空间的排序及监察产品来设定。 数字电源系统管理 (PSM) 的一项主要优势是设计成本的降低和产品上市进程的加快。复杂的多轨系统可有效地采用一种具直观型图形用户界面 (GUI) 的综合性开发环境进行有效的开发。另外,此类系
[电源管理]
基于DSP的交流电机变频调速系统设计
 O 引言   目前 交流调速 电气传动已经成为电气调速传动的主流。随着现代交流电机调速控制理论的发展和电力电子装置功能的完善,特别是微型计算机及大规模集成电路的发展,交流电机调速取得了突破性的进展。   恒压频比(U/F=常数)的控制方式是转速开环控制,无需速度传感器,控制电路简单,负载可以是通用标准异步电动机,所以通用性强,经济性好,是目前通用变频器产品中使用较多的一种控制方式,普遍应用在风机、泵类的调速系统中。   电压空间矢量法(SVPWM),也叫“磁链跟踪控制”,和经典的SPWM控制着眼于输出电压尽量接近正弦波不同,它是从电动机的角度出发,着眼于如何使电机获得幅值恒定的圆形旋转磁场。   
[嵌入式]
基于DSP的交流电机变频调速<font color='red'>系统设计</font>
基于CS5451A多路同步数据采集系统设计
摘要:针对目前低电压等级的继电保护以及测控装置对数据采集的高精度、低成本的要求,提出一种多路同步数据采集系统的设计方案。该方案采用MPC8313为主控制器,CS5451A为模数转换器,通过对CS5451A Master模式串口输出时序以及FIFO读写时序的研究,在CPU和CS5451A之间设计了一个串并转换模块实现采样数据的接收,数据接收后存入FIFO缓冲区,这样解决了利用处理器SPI接口直接接收数据CPU占用率高的矛盾。 关键词:FPGA;异步FIFO;模数转换器;CS5451A 继电保护或者测控装置都需要同步采集多路的电压或者电流信号,现在一般的实现方式都是用多路逐次逼近型ADC(譬如AD7656或者ADS8-556)实现
[单片机]
基于CS5451A多路同步数据采集<font color='red'>系统设计</font>
RFID协议一致性测试系统设计
1. RFID协议一致性测试系统发展现状 近年来,RFID技术得以快速发展,已被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多领域。随着制造成本的下降和标准化的实现,RFID技术的全面推广和普遍应用将是不可逆转的趁势,这也给RFID测试领域带来了巨大的需求和严峻的挑战。负责制订RFID标准的两大主要国际组织ISO和EPCglobal都针对RFID协议一致性测试及其系统设计发布了相关的规范。 1.1 RFID协议一致性测试的相关规范 RFID协议一致性测试规范是随着RFID协议标准的发展而发展起来的,测试规范的目的即确定被测单元的特性与协议标准的规定一致。ISO和EPCglobal都根据已发布的RFID协
[测试测量]
RFID协议一致性测试<font color='red'>系统设计</font>
SPCE061A的射频读写器信号分析系统设计
  引 言   射频识别RFID技术是一种基于射频原理实现的非接触式自动识别技术。它的基本原理是信号通过空间耦合(交变磁场和电磁场)实现信息传递,这些信息一般加载在电子标签中。信息的数据格式通常有标准的韦根(Wiegand)信号或各种串行通信接口信号。   当前,读写器的应用日渐广泛。在生产和销售的过程中,人们常常苦于没有一种快速、简便的方法对读写器的输出信号进行直观的显示,以至于在生产中常常需要将产品进行返工,重新校正产品的信号输出。为解决这一问题,采用具有语音处理功能的SPCE061A单片机作为控制器,对射频读写器常见的输出信号进行分析和处理。   1 信号分析系统的总体设计   在射频读写器中,需要分析
[单片机]
SPCE061A的射频读写器信号分析<font color='red'>系统设计</font>
基于静压传感器MS5534B的无人机高度测量系统设计
1.引言 无人机的高度测量传统上一直采用静压传感器作为感知手段,通过其压差膜盒对大气静压的感应,将大气压力转化为模拟信号输出,从而计算出实际的高度值。由于大气压力的变化除了与高度变化紧密联系外,与本地的实际温度也密切相关,但是大部分静压传感器在设计时并未考虑到实际温度对大气压力的影响,这就造成了实际输出静压值与真实值之间的大幅度偏差,从而影响了高度的精确计算。 本文针对上述不足,提出了使用带有温度补偿和校准系数的高灵敏度静压传感器MS5534B作为无人机高度测量的传感器件,同时考虑到无人机飞控处理器运算能力不足的实际情况,提出一种分段拟合曲线的线性算法,以较高的精度实现了无人机的高度计算。 2.系统硬件设计
[单片机]
基于静压传感器MS5534B的无人机高度测量<font color='red'>系统设计</font>
无绳自动答录电话机的系统设计
     摘要:本文介绍了一款无绳自动答录电话机主机系统的硬件结构和软件程序流程,并着重描述了自动答录的工作原理。     关键词:CATD OGM ICM     一、 引 言     无绳自动答录电话机(CTAD-----Cordless Telephone Answering Device)是一种无绳电话机,同时它的主机又是自动答录电话机-能自动接通打入的电话、播放机主留言OGM(OutGoing Message)、记录客人留言ICM(InComing Message),有的还能同时记录打电话时双方通话的内容信息。这些特有的功能使其具有来电显示电话机和语音邮箱所无法替代的作用
[应用]
实时DSP系统设计开发流程和DSP工具
  DSP系统设计开发流程   在设计需求规范,确定设计目标时,其实要解决二个方面的问题:即信号处理方面和非信号处理的问题。   信号处理的问题包括:输入、输出结果特性的分析,DSP算法的确定,以及按要求对确定的性能指标在通用机上用高级语言编程仿真。 非信号处理问题包括:应用环境、设备的可靠性指标,设备的可维护性,功耗、体积重量、成本、性能价格比等项目。   算法研究与仿真这是DSP应用实际系统设计中重要的一步。系统性能指标能否实现,以何种算法和结构应对需求,都是在这一步考虑的。这种仿真是在通用机上用高级语言编程实现的,编程时最好能仿DSP处理器形式运行,以达到更好的真实性。   DSP芯片选择中通常有下列几条应注意的:
[嵌入式]
小广播
热门活动
换一批
更多
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved