基于PIC16F877A的混沌信号发生器的设计

最新更新时间:2013-06-21来源: EDN关键字:PIC16F877A  混沌信号  发生器 手机看文章 扫描二维码
随时随地手机看文章

  混沌科学得到广泛研究应该得益于20世纪60年代洛伦兹(Lorenz)的“蝴蝶效应”。混沌信号具有初值敏感性、内随机性、遍历性和有界性等特点,近几年得到深入的研究和探索,并开始广泛应用于信号处理、保密通信、生物医学等领域,特别是在医疗器械的应用,有着重大的突破。科学研究表明:生物体是一个高度的非线性系统,而非线性系统的运动通常表现出混沌现象,人体的生理活动呈现众多的混沌现象。所以,研究混沌信号源的产生对生物医学的研究有着极其重要的意义。

  1 混沌信号产生的数学建模与仿真

  1.1 混沌信号系统数学模型的选用

  该设计中,考虑到人体生理活动本身也是一个混沌系统,主要是要产生一个具有混沌特性的信号源,来调节人体的生理活动,因此,该设计采用最经典的Lorenz混沌模型来产生信号。其数学模型如式(1)所示。当σ=10,b=8/3,r=28时系统进入混沌状态。此时Lorenz方程可表示为式(2)。

  代入数值得:

  1.2 基于Matlab/Simulink的Lorenz混沌系统仿真

  Simulink是Matlab软件的一个附加组件,为用户提供了一个建模和仿真的工作平台,它采用模块组合的方法来创建动态系统的计算机模型,其重要的特点是快速、准确。对于比较复杂的非线性系统,效果更为明显。其用户交互接口是基于Windows的模型化图形输入,即用户只需要知道这些模块的输入/输出和模块的功而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们接起来就可以构成所需要的系统模型(以.mdl文件进行存取),进而进行仿真与分析。在Matlab/Simulink环境下创建仿真模型,如图1所示,运行仿真后,可得混沌系统时域波形以及相轨迹图仿真结果,如图2所示。



  2 基于PIC16F877A的混沌信号发生器的硬件设计

  基于最经典的Lorenz混沌方程,用输出电压U,W代替Lorenz混沌系统中的两个变量x,z;利用单片机PIC16F877A软件编程方法产生二路数字混沌信号,再经D/A转换成模拟混沌信号、电压放大后与低频信号混频、调制,再进行功率放大,从而得到可应用于生物医学的混沌信号源。具体框图如图3所示。

  2.1 数字混沌信号的产生

  混沌信号的产生方法很多,可以利用模拟元件进行产生模拟混沌信号,也可用采用单片机或DSP等芯片,利用软件方法产生数字混沌信号。由于数字方法具有保密性好、电路简单、信号产生稳定等优点,加上PIC单片机的硬件系统设计简洁,指令系统设计精练,故该电路采用PIC16F877A单片机作为主芯片,电路如图4所示。系统时钟采用标准的4 MHz的晶体振荡方式XT,复位电路采用MCLR外接低电平信号进行人工复位,单片机I/O端口B和C分别输出混沌数字信号。

  2.2 D/A转换电路

  由于混沌信号要与低频音乐信号进行混频、AM调制,故数字混沌信号必须进行数/模转换,电路中采用DAC0832进行D/A转换,如图5所示。

  C3和C4为滤波电容,主要对电源进行高频和低频滤波,10脚和3脚分别接数字地和模拟地,以减少数字/模拟接地干扰,通过D/A转换,把电压信号转换为交流电流从第11脚输出。

  2.3 电压放大电路

  由于PIC产生的信号比较微弱,必须进行电压放大,采用LM386进行电流一电压转换和电压放大,如图6所示。信号通过U5实现电流一电压转换电路,通过RP2电位器进行取样,然后经U6进行电压放大,输出送至后一级电路。

  2.4 调制电路

  由于音乐旋律本身也是一种混沌信号,该设计主要是利用从PIC16F877A产生的混沌高频信号和音乐语音信号、极低频信号进行调制,得到混沌音乐信号,送至调制器作为医疗器械的信号源,推动输出装置。

  2.5 功率放大电路

  调制后的信号功率比较小,必须经过功率放大以驱动负载,可以采用三极管或CMOS场效应管进行功率放大。

  3 基于PIC16F877A的混沌信号源的软件设计

  PIC16F877A芯片的主程序流程如图7所示。

  工作过程如下:上电后PIC芯片完成初始化,查询主控微机是否发出了包含参数配置信息的指令信号:如果没有则继续查询;如果有则接收指令信号,根据主控微机发来的信号判断混沌方程的类型以及参数,用数值积分法求解混沌方程,得到混沌方程某一个时刻的浮点格式的数值解。将其转换为PIC芯片可接受的控制数据格式。为了实现不同的频谱展宽效果,需要相应的加上不同的延时。然后再将该数据写入PIC芯片,判断程序是否结束。如果不结束,则程序返回,继续进行数值积分求解下一个离散时间点的混沌方程的解。

  4 混沌信号发生器的调试效果

  为了验证混沌信号源输出信号的正确性,根据混沌信号发生器电路板的布线结果进行元件安装、调试,用信号器进行观察。将音乐信号、极低频信号加载到混频器,与PIC16F877A产生的混沌信号进行混频,送至调制器进行调制,经功率放大后,调制混沌信号U的输出结果(u-t)如图8所示。从输出结果可以看出信号明显具有混沌特性。这说明,输出的混沌调制信号是正确的。

  5 结 语

  混沌是继相对论、量子力学之后的20世纪的第三次革命,近几年得到广泛的应用。研究混沌信号的产生、基本特征以及在生物医学的应用将会成为未来主要的前沿研究方向,包括心脏混沌控制、脑电信号混沌控制等,而所有这些研究均是基于非线性混沌信号和生物体混沌态的控制,有待人们进一步探索、发展。

关键字:PIC16F877A  混沌信号  发生器 编辑:探路者 引用地址:基于PIC16F877A的混沌信号发生器的设计

上一篇:高分辨率数字电位器的软件实现
下一篇:电源中的负载管理与负载开关设计与实现

推荐阅读最新更新时间:2023-10-17 15:46

基于51单片机的波形发生器&DA转换(dac0832)
代码如下: #include reg51.h #define uchar unsigned char sbit ksaw=P2^0; //锯齿波按键. sbit ktran=P2^1; //三角波按键. sbit ksquare=P2^2; //方波按键. sbit ksin=P2^3; //正弦波按键. uchar key1; uchar keya; uchar keyb; uchar keyc; uchar keyd;void delay( ); uchar code tab ={ 64,67,70,73,76,79,82,85,88,91,94,96,99,102,
[单片机]
基于51单片机的波形<font color='red'>发生器</font>&DA转换(dac0832)
函数发生器输出电压值会与设定值不同
我是在做STM32AD采样时发现的这个问题,明明输出的信号峰峰值1V,通过单片机计算过幅值之后,却翻了一倍。加上直流偏移量之后,就变得无规律可循。本以为是程序的问题,后来放到示波器上验证了一下,发现结果和我用STM32计算的一模一样。 实际上,是因为两个仪器的阻抗不匹配。 函数和任意波形发生器的缺省设置的输出阻抗是50欧姆,而示波器则是1M欧姆(大概单片机也是吧)。 现实中的电压源一般可等效为理想电压源串联内阻(阻值很小)的方式。 函数信号发生器高阻输出时,发生器的设置值即为模型中理想电压源的真实值2V。低阻输出时,应接入与发生器输出阻抗匹配的负载网络,达到分压一半的目的。此时,尽管函数信号发生器的输出电压和高阻输出时并无不同(还
[测试测量]
函数<font color='red'>发生器</font>输出电压值会与设定值不同
一种基于FPGA的VGA图象信号发生器设计
   1、引言   VGA(视频图形阵列)作为一种标准的显示接口在视频和计算机领域得到了广泛的应用。VGA图像信号发生器是电视台、电视机生产企业、电视维修人员常用的仪器,其主要功能就是产生标准的图像测试信号。   VGA图像信号发生器的设计涉及到图像数据的处理,对电路的工作速度和性能要求较高,VGA工业标准要求的时钟频率高达25MHz,使用传统的电子电路设计方法是难以实现的。采用专用的视频处理芯片,其设计技术难度大、开发成本高。本文采用FPGA+MCU方案,利用了Cyclone系列的FPGA高达上百兆的工作频率特性为图像数据处理提供了良好的实时性,其内部集成的数字锁相环为系统的工作时钟提供的良好的稳定性,其内部嵌入的存
[嵌入式]
一种基于FPGA的VGA图象<font color='red'>信号</font><font color='red'>发生器</font>设计
PIC16F877A单片机的PWM输出程序
//////////////////////////////////////// //在PICC编译器主,调试通过,PIC16F877A的PWM信号输出 #include pic.h #define uchar unsigned char #define uint unsigned int __CONFIG(0x1832); void delay() { uint k; for(k=0;k 5000;k++); } void main() { uchar k; T2CON=0X04; //开定时器2 CCPR1L=0X0F; //PWM匹配初值 CCP1CON=0X3C; //设置CCP1 模块为PWM 工作
[单片机]
三角波和方波发生器电路图
三角波和方波发生器电路图
[模拟电子]
三角波和方波<font color='red'>发生器</font>电路图
一种高精度波形发生器的设计
摘要:随着电子技术的发展,在诸如测量、控制等领域,经常要求信号的幅度保持在某个高精度的整数值上。但由于一般数据转换器在最小量化电平上的限制,其输出的信号电平很难在整数值上得到较高的精度。针对该问题,介绍一种高性能的16位数据转换器AD7846,使用TMS320VC54X系列DSP作为核心控制器,设计出幅度可精确至1mV的波形发生器。文中给出具体的硬件实现框图以及用来产生波形的DSP汇编源程序。 关键词:波形发生器 高精度 AD7846 DSP 引言 随着电子技术的发展,波形发生器已经广泛的应用在通信、控制、测量等各个领域。在很多地方,如测试测量领域,需要输出的波形能够精确地定位在某一整数值上,但通常由于ADC参考电平的限制,
[应用]
100dB动态范围的对数发生器
100dB动态范围的对数发生器 该电路具有100dB的动态范围,这相当于输入电压有50倍的变化。
[模拟电子]
100dB动态范围的对数<font color='red'>发生器</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved