1 引言
AC/AC交流变换是把一种形式的交流电变换为另一种形式的交流电[1-2],其中可用于升压变换的主要有工频变压器、交-直-交变换器、电子变压器[3-4]、高频交流环节AC/AC交流变换器[5-6]、非隔离的Boost型、Buck-Boost型AC/AC交流变换器[7-11]。
工频变压器体积重量大,且无稳压及调压功能;交-直-交变换器变换级数过多,变换效率不高,对电网谐波污染严重,且在升压场合还需一台升压变压器;电子变压器体积重量小,无稳压及调压功能,且开关器件数量众多;高频交流环节AC/AC交流变换器虽然可实现电气隔离,但拓扑结构及控制电路复杂,且开关器件数量众多;Buck-Boost型AC/AC交流变换器能实现升降压功能,但其开关管电压应力高,输入输出之间无直接能量传递通路,从而变换效率不高,且输入输出相位相反;在无需隔离的升压场合,Boost型AC/AC交流变换器具有结构简单、容易控制等特点。本文详细分析了单相Boost型AC/AC交流变换器的工作原理及其控制策略,对其进行了仿真研究,并研制了一台原理样机,仿真及试验结果与理论分析一致。
2 电路结构与工作原理
图1为单相Boost型AC/AC交流变换器的电路结构[7],其中S1(S1a、S1b)和S2(S2a、S2b)为两对交流开关管,二者高频互补开通,开通时间分别为DTS、(1-D)TS,其中D为占空比,TS为开关周期。
该变换器可看成正反两个Boost型DC/DC直流变换器的组合,当输入电压大于零时,正向Boost型DC/DC直流变换器由电感Lf、开关管S1a和S2a、电容Cf构成;当输入电压小于零时,反向Boost型DC/DC直流变换器由电感Lf、开关管S1b和S2b、电容Cf构成。
假设输入电压uin为理想正弦波,则:
其中Um为输入电压幅值;w=2pf,为输入电压角频率;f为输入电压频率。
输入电压uin和电感电流iLf的参考方向见图1所示。根据输入电压uin和电感电流iLf的极性不同,在一个输入电压周期内,存在四种不同工作阶段:uin >0, iLf >0;uin >0, iLf <0;uin <0, iLf<0;uin <0, iLf >0,如图2所示。
(1) uin > 0, iLf > 0
在[t0~t1] 时段内,uin>0, iLf >0。此时开关管S1b、S2b恒通,S1a、S2a高频互补开通,正向Boost型DC/DC直流变换器工作,其两种开关模态如图3所示。(图中回路框表示电感电流iLf流经的路线,箭头表示电压、电流的实际方向;恒通的开关管省去,用直线代替。)
当开关管S1a开通、S2a关断时,电感电流iLf经电感Lf、交流开关管S1、输入电源uin流通,如图3(a)所示;当开关管S1a断开,S2a开通时,电感电流iLf经电感Lf、交流开关管S2、电容Cf和负载、输入电源uin流通,如图3(b)所示。
(2) uin > 0, iLf < 0
在[t1~t2]时段内,uin >0, iLf <0,此时开关管S1b、S2b恒通,S1a、S2a高频互补开通,正向Boost型DC/DC直流变换器工作,其两种开关模态如图4所示。
当开关管S1a开通、S2a关断时,电感电流iLf经电感Lf、输入电源uin、交流开关管S1流通,如图4(a)所示;当开关管S1a断开,S2a开通时,电感电流iLf经电感Lf、输入电源uin、电容Cf和负载、交流开关管S2流通,如图4(b)所示。
(3) uin < 0, iLf < 0
在[t2~t3]时段内,uin <0, iLf <0,此时开关管S1a、S2a恒通,S1b、S2b高频互补开通,反向Boost型DC/DC直流变换器工作,如图5所示。
当开关管S1b导通,S2b断开时,电感电流iLf经电感Lf、输入电源uin、交流开关管S1流通,如图5(a)所示;当开关管S1b断开,S2b开通时,电感电流iLf经电感Lf、输入电源uin、电容Cf和负载、交流开关管S2流通,如图5(b)所示。
(4) uin< 0, iLf > 0
在[t3~t4]时段内,uin<0, iLf >0,此时开关管S1a、S2a恒通,S1b、S2b高频互补开通,反向Boost型DC/DC直流变换器工作,如图6所示。
当开关管S1b导通,S2b断开时,电感电流iLf经电感Lf、交流开关管S1、输入电源uin流通,如图6(a)所示;当开关管S1b断开,S2b开通时,电感电流iLf经电感Lf、交流开关管S2、电容Cf和负载、输入电源uin流通,如图6(b)所示。
3 控制策略
通过对单相Boost型AC/AC交流变换器的工作原理的分析可知,无论电感电流方向如何,开关管的工作模态只与输入电压的极性有关。当uin > 0时,开关管S1b、S2b恒通,S1a、S2a高频互补开通, 正向Boost型DC/DC直流变换器工作;当uin < 0时,开关管S1a、S2a恒通,S1b、S2b高频互补开通,反向Boost型DC/DC直流变换器工作。由此可得单相Boost型AC/AC交流变换器的控制框图,如图7所示。
输入电压经采样后,由过零比较器得到输入电压uin的极性信号SP1,SP1反相得到信号SN1; 输出电压uo的反馈采样信号uo_f与基准输出电压uo_ref比较,经PI调节后得到电压误差信号ue,ue与三角波进行比较,得到高频PWM控制信号SP2,SP2反相后得到控制信号SN2; SP1、SN1分别与SP2、SN2进行逻辑或调制,得到开关管S1a、S1b、S2a、S2b的控制信号K1a、K1b、K2a、K2b。
4 仿真与实验
为了验证Boost型 AC/AC交流变换器理论分析的正确性和控制策略的可行性,对该变换器进行了仿真与实验研究。
4.1仿真波形
仿真参数如下:输入电压的有效值Uin=110 V,基准输出电压的有效值Uo_ref =220 V,开关管采用理想器件;输入电压频率为50 Hz;开关频率为50 kHz;电感Lf =500 μH,电容Cf =10 μF。
开关管S1a、S1b、S2a、S2b的控制信号K1a、K1b、K2a、K2b的仿真波形如图8(a)所示;图8(b)中是交流开关管S1两端电压uS1、输入电压uin和输出电压uo的仿真波形,其中uo和uin相位相同,交流开关管S1两端的电压uS1是以输出电压uo为包络线的高频脉冲序列。
4.2实验波形
制作了一台实验原理样机,开关管采用MOSFET IRFP460PL,实验参数为:输入电压的有效值Uin=110 V,基准输出电压的有效值Uo_ref =220 V;输入电压频率为50 Hz;开关频率为23 kHz;电感Lf =900 ?H,电容Cf =4.4 ?F。实验波形如图9所示。
图9(a)为开关管控制信号K1a、K1b、K2a、K2b的实验波形;图9(b)为输出电压uo和交流开关管S1两端电压uS1的实验波形;图9(c)为输入电压uin和输出电压uo的实验波形。可见,输出电压uo和输入电压uin相位一致;交流开关管两端电压uS1是高频电压脉冲序列,其包络线为输出电压uo。
5 结论
单相Boost型AC/AC交流变换器可看成正反两个Boost型DC/DC直流变换器的组合,通过对输入电压的极性判断,并结合输出电压误差放大信号与三角载波的比较结果,可确定各开关管的工作状态。该变换器具有结构简单、控制容易等优点。仿真和试验结果验证了理论分析的正确性及控制策略的可行性。
上一篇:高效节能技术应对更严格电源能效规范要求
下一篇:利用红外线传感器实现接近感应应用
推荐阅读最新更新时间:2023-10-17 15:46
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC