概述
随着3G/4G网络的部署和在用户终端上集成的功能应用越来越多,虽然终端平台厂家利用更高的工艺和算法来降低功耗,但是终端平台的功耗却一直呈现上升的趋势。我们做过的几款终端产品功耗甚至已经接近了4W,随着功耗的增加除了部分能量辐射到空中后,大部分的能量以热的形式散发出去,同时用户终端要求外形是越来小巧,与市面上的U盘的体积已经非常的接近,在这么小体积内要耗散这么大的功耗,结构件的表面温度是非常高的,已经严重影响了用户的体验甚至影响到了系统的稳定性,因此在设计的时候,终端产品的PCB布局是非常重要的。可以说,一个良好的热布局意味着良好的系统性能和用户体验,也是产品能否通过欧美高端运营商测试的非常重要的因素。
目前已经可以见到很多常规的PCB布局方法,比如说:热点分散;发热器件的位置要合理;高热耗散器件在与基板连接时应尽能减少它们之间的热阻;在每一层要多打孔。对PCB的热设计也由此显得很重要,因为塔决定着PCB布局的好坏。本文介绍了一种根据热源器件的功耗分析进行PCB热设计的方法,该方法简单实用,在多个项目中都得到了使用,其效果良好。这种方法进行PCB的热设计分如下4步进行。
第一步:估算发热器件的功耗。
第二步:根据发热器件的功耗计算发热器件周围多大范围内不能有其它发热器件。
第三步:根据发热器件的功耗计算发热器件的实际工作结温以及相对环境的温升有多大。
第四步:根据第二步和第三步的数据进行PCB的热设计。
市场上卡类终端的功耗现状和面临的挑战
随着LTE无线网络的部署,下行的数据速率已经达到并超过了1Gbps,要处理这么高的数据速率,数据终端必需要很高的数据处理能力,同时必然带来功耗的增加。而我们正在研发的几款产品均出现了热的问题,有几款样机在大速率数据传输时甚至在几分钟内就出现系统崩溃的现象,而这些问题的根源就是发热,热设计已经成为了卡类终端的一个挑战。苹果公司iPAD产品的一个实例,大量用户反馈其产品在较高环境下出现问题,这从侧面反映了热设计对于终端产品的重要性。功耗热已经成为了工程师在产品设计的初期需要认真考虑的一个关键问题。
终端平台的热源器件主要有基带芯片、射频芯片、功放、电源管理芯片等,这些器件的功耗有的可以从厂商给的datasheet中查到,有的查不到,对于从datasheet中查不到功耗数据的热源器件,需要根据经验或同类项目的测试数据进行估算,还可以直接向平台提供商索取相关数据。表1为某项目主要热功耗器件的功耗评估结果。
从表1的数据中我们可以看到一款数据卡的功耗已经接近了4W,要想在U盘大小的结构件内耗散这么大的热量,PCB的热设计可以说已经成了产品能否可靠工作的一个至关重要的设计考量。
从表1的数据中我们可以看到一款数据卡的功耗已经接近了4W,要想在U盘大小的结构件内耗散这么大的热量,PCB的热设计可以说已经成了产品能否可靠工作的一个至关重要的设计考量。
卡类终端产品的一种热布局算法
自然对流冷却的热流密度经验值是0.8mW/mm2,即当每平方毫米的面积上分布的功率是0.8mW时,可以产生很好的自然对流冷却效果。热源器件的热距离的计算是基于此经验值进行的。计算方法如下:
设某芯片的长是L(mm),宽是W(mm),该器件的功耗是Pd(mW)。
要达到自然对流冷却效果,该器件应占用的PCB面积是:
限定器件长边和宽边的热距离相等,均为x(mm),则把热距离考虑在内该器件占用的PCB面积是:
以上计算仅考虑了PCB单面散热,实际PCB双面都可以散热,如果热源器件背面没摆放其它器件,那么背面的铜皮也可以起到散热作用,此时的热距离将是上面计算所得数据的一半,即:
下面计算热源器件所占的PCB面积。
在PCB布局中,上面的计算数据往往是不可行的,因为PCB的面积有限,如果按上面的数据进行布局的话,PCB的面积就不够用了,所以需要对上面的数据按一定比例压缩,可以把上面的热距离除2作为压缩后的热距离,由此计算压缩热距离后热源器件所占的PCB面积如下:
热源器件背面有器件,压缩后所占PCB面积:S1=
热源器件背面无器件,压缩后所占PCB面积:S2=
器件的热工作可靠性分析
任何一个热源器件能承受的最高结温是有限的,这个最高结温在厂家给出的datasheet内都能查到,如果热源器件实际工作的结温高出了能承受的最高结温,那么热源器件的工作将会进入不可靠状态,对于这种情况,在PCB布局时就要考虑把这类器件远离其它发热器件,周围大面积铺铜,所在位置正下方的内层和底层也大面积铺铜,以此来解决这类器件结温过高的问题,所以计算热源器件实际工作的结温在PCB的热设计中也是非常重要的。另外还需计算热源器件相对于环境的温升,知道了热源器件相对于环境的温升,就知道了哪个热源器件温度最高,这样在热布局过程就会做到心中有数。
热源器件的功耗分析、热源器件的热距离布局面积计算以及热源器件的环境温度分析都完成后就可以开始PCB的布局了,PCB的布局需要遵循最基本的热设计原则,如:热点分散;将最高功耗和发热最大的器件布置在散热最佳位置;不要将发热较高的器件放置在印制板的角落和四周边缘;高热耗散器件在与基板连接时应尽能减少它们之间的热阻等,另外还要按照上面计算的压缩热间距布放热源器件,在热源器件的压缩热间距内尽量少布器件,更不能布放发热器件,热源器件的背面也要尽量少布器件,更不能布放发热器件。图1为本项目的最终PCB版图,图2为其温度测量图。由图可见,本设计方法是实用的。
结语
通过功耗分析进行PCB的热设计是我们在项目的热设计过程中探索得出的经验,实践证明降温效果是很明显的,有效的降低了整机的温度,提高了系统的稳定性。
上一篇:变频器的微浪涌电压抑制技术
下一篇:一种应用于深亚微米存储器的电荷泵设计
推荐阅读最新更新时间:2023-10-12 22:23
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC