工程实验室通常配备有网络分析仪,但很少配备用于DC-DC转换器闭环分析的注入变压器。Agilent公司出售这种变压器,作为测试设备配件,但是价格昂贵。Ridley Engineering和Venable公司也出售注入变压器。这种注入变压器具有出色的性能指标,但是价格也很昂贵。注意,它们的作用仅仅是变压器。作为另外一种替代方案,你也可以将电流变压器作为电压变压器使用,获得一个更具成本效益的注入变压器。
设计变压器时,最难的参数是带宽。一方面,低频性能需要更大的磁芯和更多的匝数,这样会增大变压器的物理尺寸。另一方面,高频性能需要良好的耦合、小尺寸和最少的匝数。 幸好,电流变压器适合大多数应用场合。例如,Pulse Engineering公司的PE-51687在铁氧体磁芯上有一个100匝的初级绕组,没有次级绕组。
磁芯上有一个通孔,用户可以用标准导线自己绕制任意匝数的次级线圈。这条线同时也作为待测电路的一条连接线,并能根据次级线圈的匝数提供一定的驱动电平。 由于构建的是电压变压器,因此需要控制初级电压。假使变压器的初级电抗比网络分析仪源电抗高,则给初级并联一个50电阻,就可正确地端接网络分析仪的信号源。低频情况下,初级感抗必须大于从变压器看过去的戴维南(Thevenin)等效阻抗(25)。
PE-51687的初级电感为20mH,变压器可以工作的最低频率应满足: Xl=2*3.1416*Freq*Lprim。
对上式变形可以得到:Freq = 25/(6.28*20mH) = 200Hz 200Hz的低频截止频率适用于小信号,但是如果电压较大,超过了磁芯的伏秒积指标,则会导致磁芯饱和。PE-51687的初级伏秒积指标为600V*ms (600ms,1V)。因此,驱动电压也会限制低端频率响应。
高频响应受限于初级线圈中的电容。例如,PE-51687的高频响应可达5MHz,并在超出该频率时出现一个峰(图1)。注意到这个峰幅度很高(+15dB),但在次级并联22电阻可使其大幅度降低(图2)。多数情况下,通过限制网络分析仪的扫频上限可避开这个峰。
图1. PE-51687变压器的频率响应,次级线圈的匝数为8。
图2. PE-51687变压器的频率响应,次级并联22电阻。
图1和图2 (还有后面的图5)所示的频响图是在网络分析仪的信号源以0dBm驱动下,利用分析仪的50输入和一个X10 (-20dB)倍的FET探头测得的,测试装置如图3所示。试验所用的变压器有8匝Teflon绝缘的24AWG线(由于Teflon绝缘层可以经受焊接时的高温,适合用来进行电路连接,用其它导线也是可以的)。由于匝数比为100:8,该变压器有-21.9dB的插入损耗。因此,测量值(-42dBm)中包括了FET探头的损耗。
图3. 注入变压器用于环路增益测量。
在用注入变压器测试闭环系统时,必须在某个点断开环路。这个点对于网络分析仪的A端口(图3)必须有很低的反射阻抗,而对于R端口的反射阻抗必须高。这一点很重要,因为,如果超过交叉点后的闭环增益远小于一的话,变压器注入的信号大部分将会出现在R端口上。 例如,如果R端反射阻抗仅为A端反射阻抗的9倍,那么,十分之一的信号将会出现在A端口上。
其余是分之九将出现在R端口,与真正的环路响应无关。这种情况下,需要用缓冲器(例如FET探头)来提高网络分析仪的输入阻抗,使之大于其固有的50。 很多情况下,环路增益测试允许网络分析仪有50的负载,多数电源的输出阻抗远低于50,因此,A端口上的负载问题不是很严重。但要小心不要过驱动网络分析仪的50输入。多数分析仪限制最大输入为5VRMS,若电压过大将会损坏分析仪,随之而来的修理费用十分昂贵。FET探头有-20dB的衰减,允许大多数分析仪无需使用隔直电容器即可测量高达50V电压。 试验装置配置完成之后,应确定适当的注入信号电平。
对于网络分析仪而言,较高的信号电平有利于降低背景噪声的影响,但电源对于大幅度的注入信号的响应可能是非线性的。在这种情况下,摆动速率、电流限制或限幅等因素可能会影响电路的行为。因此,建议使用比输出纹波稍大一些的信号。 PE-51687的匝数比为100:8,很容易提供幅度超过大多数输出纹波的信号。对于0dBm (224mVRMS)输入,变压器输出为18mVRMS (50mVP-P)――非常合适的测试电平。网络分析仪的输出信号源可以调整注入电平。如果调解范围不够,还可以通过增加或减少次级匝数来调整驱动电平。
低频工作时,Pulse Engineering公司的PE-51688具有200匝初级绕组,初级电感为80mH,可用信号频率低至50Hz。它的伏秒积指标为1200V*μs。对于高频应用,最好选择50匝的PE-51686。对于更高频率(高达100MHz),可使用Rogowski线圈。
这种高带宽电流变压器的初级线圈每匝绕组上都并联了内部电阻,并且初级线圈和磁芯周围有Faraday屏蔽。 并联电阻乘以匝数得到非常接近理想的50阻值,每匝线圈上并联一个电阻这样使阻尼功能分布在整个变压器内。尽管很昂贵,但这种变压器几乎是无振铃的,并且能轻易提供100MHz的信号(图4)。图5所示的网络频响图代表一个50:1 (1V/A)的变压器,次级为单匝线圈,由Pearson Electronics或Stangenes Industries Inc.提供。
图4. Rogowski电流变压器。
图5. 1-V/A, 50:1 Rogowski线圈,单匝次级变压器的频率响应。
电流感应变压器用作信号注入的主要局限在于其较差的低频性能。大多数Bode图在50Hz以下变得非常嘈杂,并且经常超过80dB,它会延伸多数网络分析仪上的噪声极限。不过,多数DC-DC系统在50Hz以下工作得很好,并不需要分析。如果必须测量低频,就必须采用一个更大磁芯或更多线圈的变压器。这样一来会增大变压器的外形尺寸,不利于测试。还可以采用降低频率上限的方法:如今大多数系统的交叉频率远高于10kHz,非常适合PE-51687电流变压器。
上一篇:电流断续时Cuk转换器的工作原理和基本关系
下一篇:LTC3601/LTC3604单片DC/DC 转换器的应用
推荐阅读最新更新时间:2023-10-12 22:24
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC