图1为峰值电流控制的CCM反激式PFC转换器的原理框图,控制器包括乘法器和电压、电流比较器等。
图1 峰值电流控制的CCM反激式PFC转换器原理框图
假设周期开始时,开关V导通,t=0,iv=Iv1;t=ton=DuTs时,iv=Ip,此时开关V关断、输出iD从零突变到Ipo开关管V导通期间,开关电流从Iv1增长到Ip的变化规律为:
在一个开关周期内,iv的平均值ivav与整流输入电压Udc有关
式中 L----变压初级电感。
根据一个周期内平伏秒平衡的原则,可以证明占空比
因此,图2电路的电流峰值跟随Udc.电流平均值是Du和Udc的函数,而Du又与输人电压ui有关,所以电流平均值是Udc的非线性函数。CCM反激式PFC转换器的优点是:噪声小,功率因数可以校正到接近于1,效率高,峰值电流小。
CCM反激式PFC转换器也可以采用电荷控制方式,图2所示为利用电荷控制的CCM反激PFC转换器原理电路图,系统中除了主开关管v,外,还有信号开关管⒕,也是双环控制系统,包括电荷控制环和电压环。电压环的误差电压和整流后的输入电压(除以Κ')经过乘法器,得到电荷控制环的基准信号Z,电容CT上的电压uT(和CT电荷成正比)与Z比较后,控制主开关管V1,。每个开关周期开始时,开关管V1导通、V2关断,电流互感器检测的电流信号iVT使电容CT充电。其电压UT到达Z时,开关管V1关断、V2导通,电容CT放电。开关管V1的电流平均值iVlav和电容CT上的电压uT如下式所示
可见,若Du及Ts为常数,则ivlav与uT成正比。
图2:电荷控制的CCM反激式PFC转换器原理电路图
关键字:COM反激式 PFC 转换器
编辑:探路者 引用地址:COM反激式PFC转换器的工作原理
推荐阅读最新更新时间:2023-10-12 22:24
双输入、2.5A 同步降压型 DC/DC 转换器采用无损耗电源通路控
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2016 年 10 月 4 日 凌力尔特公司 (Linear Technology Corporation) 推出2.5A、42V 同步降压型开关稳压器 LTC3126,该器件集成了双输入电源通路 (PowerPath ) 控制。LTC3126 独特的电源级拓扑允许用两个独立的电源之一运行,输入之间可无缝转换且转换是内部控制的,以在发生热插拔和电源断接事件时确保稳定的输出电压。该器件的内部电源开关和同步整流相结合,可在宽电压范围内提供 95% 的效率、实现快速瞬态响应并在以 2MHz 切换时确保出色的环路稳定性。这就使设计师能够避开关键的噪声敏感频段 (例如 AM 无线电频
[电源管理]
具有液晶显示器的3位数字AD转换器电路图
具有液晶显示器的3位数字A,D转换器电路图
[模拟电子]
FPGA夹层卡简化高速数据转换器到FPGA的连接
中国,北京 —Analog Devices, Inc. (NASDAQ: ADI)全球领先的高性能信号处理解决方案供应商,最近亮相在慕尼黑举办的2012年电子元器件展并推出一款FPGA夹层卡(FMC) FMC176,该器件结合了JEDEC JESD204B SerDes(串行器/解串器)技术,使数字和模拟设计人员得以简化高速数据转换器到FPGA的连接。 这段90秒的视频演示了如何用ADI的 JESD204B数据转换器和Xilinx Inc.公司的FPGA平台方便快速地完成原型制作: http://videos.analog.com/video/1907547501001/Rapid-Prototyping-with-JES
[嵌入式]
10V/20A恒定电流、恒定电压降压型转换器
LT3741和LT3741-1是固定频率同步降压型DC/DC控制器,专为准确地调节高达20A 的输出电流而设计。平均电流模式控制器将在一个0V 至(VIN – 2V) 的宽输出电压范围内保持电感器电流调节作用。已调电流由 CTRL引脚上的一个模拟电压和一个外部检测电阻器来设定。LT3741运用了一种独特的拓扑结构,因而能够供应和吸收电流。如果不需要吸收电流或者面对的是并联应用,则可使用LT3741-1。已调电压和过压保护功能电路利用一个连接在输出端和FB引脚之间的分压器来设定。这两款器件提供了软起动功能,以在启动期间实现已调电流的逐步增加。开关频率可通过RT引脚上的一个外部电阻器或利用SYNC引脚和一个外部时钟信号在20
[电源管理]
更高的集成度、更低的成本需要更深入的系统理解
行业分析师们一致认为未来系统的发展趋势是移动便携、“绿色”节能,以及在终端设备中集成更多的传感器。这种发展趋势,要求模数 (ADC) 转换器和数模 (DAC) 转换器具有更多的通道数、更高的速度和性能,同时还要求更低的功耗预算、更小的尺寸以及更低的成本。
各大数据转换器厂商通过制造更多集成了其他电路组件的数据转换器对这些需求做出了积极的响应。尽管在许多微处理器内核周围有大量的外围设备,一些性能需求正推动许多特殊模拟前端或者其他模拟“配套”芯片的发展,其与一颗单独的处理器一起工作。
例如,TI 最近推出了 ADS1298,其为一款完整的心电图(ECG)系统前端。它将八个具有可编程增益放大器和大量辅助电路的 24 位 AD
[模拟电子]
PFC升压预变换电路
PFC升压预变换电路
在图3中,有源PFC升压级电路被置于桥式整 流器f D1~D4)和DC—AC半桥逆变器之间。 L6585D的引脚7~13内部的PFC控制器和外部元件组成有源升压型PFC预变换器。C 和C眦分别是PFC级输入和输出电容,L眦为升压电感,D眦为升压二极管,Q 为PFC开关。
[电源管理]
前沿触发型PFC控制器的启动电流瞬态
前沿触发型PFC转换器控制器为客户带来了诸多好处。最主要的就是就是控制芯片可以独特的方式运行,即在PFC转换器为输出电容提供电流的同时,下一个转换器将从这一相同的电容上获取电流。这种运行方式使得在运行期间PFC输出电容中的RMS电流被大大降低。
前沿触发型拓扑结构的开关动作是这样的:当时钟的斜坡电压与电流误差放大器输出端的电压交叉时,PFC开关将被开启。
该系统具有一个初始条件问题。当首先为芯片供电时,电流误差放大器输出端的电压就会像输入端一样被钳位至接地。此外,由于反馈结构是专门针对积分放大器的,因此输出端具有有限的dv/dt功能。这就导致了在转换器初始上电时会出现一个大电流瞬态。
根据输出电容的初始预充电状态以及初始
[电源管理]
高速A/D转换器AD7654与单片机接口电路设计
1引言 模/数转换是现代测控电路中非常重要的环节,它有并行和串行两种数据输出形式。目前,模/数转换器ADC已被做成大规模集成电路,并有多种型号和种类可供选择。本文介绍了AD7654的性能特点,并设计了AD7654与单片机ADuC848的接口电路,同时给出了软件流程和相应的汇编源程序。
2 AD7654的性能特点和工作原理 AD7654是ADI公司推出的一种低功耗、四通道、电荷再分布式高速A/D转换器,该A/D转换器的主要特点是:16位分辨率且无漏失码;0 V~5 V模拟输入范围;SPI/OSPI/Microwire/DSP兼容;两个允许同步采样的低噪音、高带宽跟踪/保持放大器;功耗典型值为1
[应用]