整流桥 AC to DC的关键
其实整理桥的全称叫做“桥式整流器”,是由四只整流硅芯片作桥式连接,然后使用绝缘朔料将其封装一起,而一些大功率桥式整流器在绝缘层外添加锌金属壳包封,主要也是为了增强散热。
电源整流桥
而有些质量较低,或者结构较老的电源中,我们不会看到封装好的整流桥,大多会以四个整流晶体管并列焊接在电路板上。
非常古老的整流桥
另外,需要注意的是,整流桥是电源中发热量较大的电气元件,尤其是在一些功率较大的电源中,整流桥必须配有散热片进行散热,否则会存在电源使用的安全隐患。
“功率因数”到底是如何产生的
通过整流桥矫正后直流电被输入到PFC电路。而在我们讨论PFC(功率因数校正)电路之前,还是让我们先来简单的了解一下什么叫做“功率因数(PF)”吧。
功率因数(PF)是指,实际功率(有效功率)与视在功率(表观功率)的比率(kW/kVA),而我们都知道,功率P等于电压与电流的乘积 (P=V×I)。另外,在电路中会存在着最本的两种电路负载,一种为“电阻(由电源中各种电阻构成的电路负载)”,另外一种为“电抗(由电源中电感线圈和电容构成的电路负载)”。
如果整个电路都是线性负载(电路阻抗为恒定常数的负载),那么电源电压和电流都将会呈现为正弦曲线,并且相位相同。而如果在这个纯电阻电路中,那么电压和电流都会在同一时刻逆转极性,那么也就是说,在每一时刻,电压与电流的乘积都为“正”。也就是说,在电路中,没有“反方向(负极方向)”的能量移动,而此时所产生负载功率才被称为“实际功率”。
纯电抗电路负载
而在一个纯电抗负载电路中,电压和电流之间会产生一定的是时间差,也就会出现相位差(最大理论值为90度,一般情况多为45度),那么电压与电流的乘积,就不一定每一时刻都为“正”了。在第一个半周期内,能量为“正”,另外一个半周期内能量为“负”,那么就是说,前半周期电源从电网中获取能量,而在后半个周期内,这些能量又会回流到国家电网中。所以如果按照一个周期计算,那么电源获得的能量会为“零”,没有能量。
电阻电抗混合电路负载
上面的两种描述都是纯理论的理想状态。但在实际应用中,电路中会有大量的电阻、电感和电容,在同一时刻都会有负载,也就会产生不同方向的“能量”。因此,所有的正向能量,我们称其为“实际功率”,而反向回流电网的能量则称之为“无用功率”,那么“实际功率”与“无用功率”的综合,就是之前我们所说的“视在功率”。
关键字:电源整流桥 功率因数
编辑:探路者 引用地址:电源整流桥及功率因数浅析
推荐阅读最新更新时间:2023-10-12 22:25
采用NCL30000的单段式CrM TRIAC调光LED驱动器设计
为了促进节能,世界各地的政府机构或规范组织制定了不同LED照明规范,主要体现在对功率因数(PF)的要求方面。如欧盟的国际电工联盟(IEC)规定了功率大于25 W照明应用的总谐波失真性能,某些地区的其它国际标准也适用这规定。
另外,美国能源部制定及发布了针对固态照明灯具的“能源之星”标准。这项自愿性标准包含针对常见住宅和商业照明灯具(如嵌灯、橱柜灯和台灯)的系列要求,涵盖最低流明输出、总体光效、可靠性目标、光色温及一系列其它关键系统级要求。值得注意的是,这个标准中并不直接包含电源能效要求,但包含功率因数要求,即不论是何种功率等级,住宅应用要求的PF大于0.7,商业应用要求的PF大于0.9,而集成LED灯光的要
[电源管理]
单级功率因数校正电路实用性的分析
摘要:针对电网对电源功率因数和谐波含量的要求,单级功率因数校正电路已经是电力电子领域的研究热点。对单级功率因数校正电路进行了分析,同时根据现在的输入电流的谐波标准,分析了单级功率因数校正电路的实用性。 关键词:功率因数校正;单级功率因数校正;实用性 引言 为了减少谐波对交流电网的污染,国内外都制订了限制电流谐波的有关标准,因此,功率因数校正(PFC)技术已成为电力电子领域中的研究热点。随着电力质量标准的日益严格,PFC变换器被越来越多地应用于开关电源、变频调速器和荧光灯交流电子镇流器中。近几年来,随着相关技术和各种控制策略的发展,PFC技术已得到大量研究。PFC电路根据工作方式可分为两大类,即无源PFC电路和有源PFC电路。有源PF
[电源管理]
实现功率因数改善与高效率的ROHM 电源技术
【ROHM半导体(上海)有限公司 3月18日上海讯】在电子设备开发中,电源的高效化已经逐年成为重要主题。另外,不仅是面临电力能源问题的日本,在全世界的发电和输电相关的电力公司,功率因数改善设备的普及与高效率同样是重中之重。在此介绍同时实现了设备工作时的功率因数改善与待机时的高效率的AC/DC电源技术。 1. 功率因数与功率因数改善电路(PFC:Power factor correction) 功率因数是指是否将电力公司生产的电力毫无损耗地输送到电子设备的数值;效率是指是否将该电力毫无损耗地转换的数值。当交流电力的电压与电流的相位差为φ时,按功率因数=COSφ求得功率因数,当电压与电流没有相位差,即正弦波时功率
[电源管理]
单级功率因数校正开关电源
摘要:与传统两级PFC变换器比较,单级PFC AC-DC变换器只采用一个开关和一个控制器。单级PFC技术在低功率电源中的应用,已成为目前研究的课题。
关键词:单级,功率因数校正,电路拓扑
1、 引言
为减少办公自动化设备、计算机和家用电器等内部开关电源对电网的污染,国际电工委员会和一些国家与地区推出了IEC1000-3-2和EN61000-3-2等标准,对电流谐波作出了限量规定。为满足输入电流谐波限制要求,最有效的技术手段就有源功率因数校正(有源PFC)。
目前被广为采用的有源PFC技术是两级方案,即有源PFC升压变换器+DC-DC变换器,如图1所示。
两级PFC变换器使用两个开关(通常为MOSFET)和两
[电源管理]
功率因数校正在离线式电源中的应用
离线式 开关 电源 通常应用整流桥和输入滤波 电容 从输入吸收能量,大 电容 在接近交流输入峰值处 充电 以给为逆变提供能量的未经调整的 BUS 提供能量。电容的容量必须足够大,当整流后半期内线电压低于 BUS 电压时,仅由它向后续提供能量。不幸的是,有输入滤波电容会导致输入电流波形不在是正弦,而是一很窄的峰值很高的电流波形,输入功率仅有 0.5~0.65 ,严重的畸变导致电网污染。线电流有效值可达两倍相同正弦电流有效值。 120V , 15A 的线路甚至不能在不导致 电路 断路器动作时提供 1Kwde 输入功率。而高功率因数校正却能够提供几乎是其两倍的功率,并且损耗很低,因此在许多领域内,高功率因数校正器成为一需求。
本文
[电源管理]
用DSP实现高功率因数PWM整流器的控制
1 、引言 PWM整流器是应用脉宽调制技术发展起来的一种新型电源变流器。其基本原理是通过控制功率开关管的通断状态,使整流器输入电流接近正弦波,并且电流和电压同相位,从而消除大部分电流谐波并使功率因数接近于1。本文采用TI公司的TMS320F240DSP对整流器实现数字控制,这一方法相对于模拟控制具有以下优点:
1)控制灵活在数字控制系统中,主要利用软件算法实现控制方案,相比于模拟控制较灵活;
2)可靠性高微机系统由于采用元器件较少,信号全部采用数字处理,故受干扰小,可靠性高;
3)故障分析容易信号检测将取得的信息寄存,具备记忆的能力,故容易实现故障诊断;
4)参数设定简便可以使系统的调
[电源管理]
实现功率因数校正的电源和适配器方案
半导体是实现高能效电子产品的重要环节,可以提供满足全球市场相关规范的解决方案。安森美半导体是其中的代表企业,其所提供的电源和适配器可实现高工作电源能效、低待机能耗及功率因数校正。
丰富的电源及电源适配器参考设计
安森美半导体的电源解决方案涵盖了AC-DC电源及适配器和DC-DC电源,并提供了各种参考设计。最典型的是为内部和外部电源提供的GreenPoint?参考设计。这些开放式参考设计为高效电源设计提供了开发路线图,借助原理图、物料单、Gerber文件、设计说明、测试结果等文档,客户可快速进入市场。该参考设计符合所有相关全球能效标准,提供了用一个设计进入全球市场的机遇。
以下一些参考设计和实例电路从多方
[电源管理]
荧光灯调光电子镇流器的设计
摘要:介绍了基于荧光灯专用电流负反馈调光控制芯片KA7543,功率因数校正芯片KA7526的调光电子镇流器的设计方案。重点讨论了软启动的必要性和相应的技术解决方案,以及实现调光和功率因数校正的机理和方法。
关键词:电子镇流器;调光;软启动;功率因数
1 引言
1999年全国荧光灯年产量37876万只,其中T8荧光灯产量8380万只 。因此,提高照明效率和质量对于节约能源和改善工作和生活条件均具有重大意义。高频电子镇流器与传统的电感式镇流器相比,具有重量轻,体积小,效率高,无频闪,易实现调光以及功率因数高等一系列优点。
上世纪80年代,分立元件的电子镇流器的市场表现不尽人意,其
[电源管理]