引言
现代电子技术的应用迅速地发展,对电子仪器和设备要求性能上更加安全可靠,功能上,不断地增加。在使用上自动化程度越来越高。在体积上,要日趋小型化。这使采用具有众多优点的开关稳压电源就显得更加重要了。所以,开关稳压电源在计算机、通信、航天、彩色电视等方面都得到了越来越广泛的应用,发挥了巨大的作用[1]。该-48V转5VSTB方案采用的是中小功率开关电源中最典型的单端反激模式,电路中DC/DC转换采用POWERINT公司宽范围输入的三引脚PWM开关TOP414G,它的最高工作频率132KHz,最大占空比70%。
TOP414G内部结构及工作原理
TOP414G的内部功能框图如下图1所示。内部集成有高压MOS开关管(图1右边那个MOS管),其工作原理就是通过Control引脚采样到的反馈信号(IFB)经过内部控制电路调节大功率MOS管的导通和截止时间(占空比),从而控制其漏极的输出,达到稳定电路输出电压的目的。下面是其引脚定义:
C pin:误差放大和反馈电流输入引脚,用来调节芯片内部MOS开关管的占空比 S pin:内部MOS开关管的源极,也就是DC/DC前级电路的参考地
D pin:内部MOS开关管的漏极,在电路启动时通过该引脚为芯片提供内部偏置电流,电路稳定后偏置电流由Control引脚的Vc提供,同时作为内部电流取样引脚用,起初级限流作用。
-48V转5VSTB电路工作原理
下图2是-48V转5VSTB的电路原理图,工作原理如下:
-48V上电瞬间,48V高压(BGND相对-48V而言)通过D引脚为TOP414G芯片提供工作必须的内部偏置电流,使芯片内部的控制电路开始工作,驱动内部高压MOS管开始其第一个开关周期,变压器次级开始有电压输出,此时由48V高压提供的偏置电流源断开。在TOP414G内部高压MOS管导通期间,维持芯片持续工作所需的偏置电流由C20(代指C脚所有外接电容)的储能提供;在MOS开关管截止期间,该偏流则由反激变压器T1的偏置绕组产生的偏压经D3整流后提供,同时对电容C20充电,为下一个周期做准备,保证电路持续输出。
Vo=Vref*[1+R7 / (R8//R9)]
当输出电压Vo增加时,Vref增加,导致通过TL431的阴极、阳极之间的电流增大,即通过光电耦合器U2初级的电流增大,使反馈到 TOP414G的C脚的电流增加,芯片内部控制电路便降低其内部MOS管的占空比,从而使输出电压Vo降低,起到稳压的作用。同理,当输出电压Vo降低时,TOP414G则提高MOS管的占空比,起到稳定输出电压的作用。
图2中C1、C2、C3电容网络起电源前端滤波作用,保证输入电源(-48V)的纯净。R1、D1和C4组成前级钳位电路,抑制电路中因高 dv/dt、di/dt产生的尖峰,降低单板的EMC影响。因为感性(容性)器件自身的电流(电压)不能突变,当U1内部的MOS管由导通变为截止的瞬间,如果没有R1、D1和C4组成的钳位电路,变压器T1初级的大电流没有泻放回路,将产生很高的电压尖峰,可能为正常工作时的几倍,严重的话会击穿U1 内部的MOS管从而损坏U1,有了钳位电路后,MOS管断开的瞬间,T1初级的高压将通过D1对C4充电构成泻放回路,在MOS管下次导通之前,C4上的电荷则可通过R1泻放掉,因此可以达到抑制尖峰,降低单板的EMC影响的作用。图3中电感L1和电容C7/C8/C9/C11/C12/C13构成pi型输出滤波器,滤除输出电压的高频噪声,降低纹波,同时在U1关断的时候起续流作用,为负载提供输出电压。其中C13一般选用容量小的陶瓷电容,滤除剩下的高频噪声。R7、R8、R9是取样电阻,和U2、U3一起构成取样反馈网络。 5VSTB使能控制电路工作原理
下图为-48V转5VSTB使能控制部分电路,工作原理为:当JOIN_EN与BGND连接时,R10和R11分压使三极管Q1的Vbe大于其阀值电压,此时Q1导通,将图6中B点电位拉低,三极管Q2截至,U1正常工作,-48V转5VSTB电路正常输出;当JOIN_EN悬空时,三极管Q1截至,R12、R13分压使B点电位高于三极管Q2的阀值电压,Q2导通,将U1的控制管脚C强制拉低,U1停止工作,-48V转5VSTB无电压输出。
结束语
该-48V转5VSTBY电路经长时间多块单板使用证明,电源设计合理,工作可靠,性价比高,具有很强的实际应用价值和广阔的前景。TOP414集电压型PWM控制器与N沟道功率MOSFET于一体,集成了120kHz振荡器、高压起动偏置电路、温度补偿、并联调整器/误差放大器和故障保护等电路。 TOP414的内部起动和电流限制电路减少了直流损耗,CMOS控制器/栅极驱动器仅消耗7mW的功率,70%的最大占空比使导通损耗最小化,低容量 MOSFET有效地降低了开关损耗,从而使其在回扫拓扑应用中的效率在80%以上。它具有管脚数量少,外围电路简单,安装与调试简便,价格低廉等优点。设计结构简单,性能稳定,实现了对电信设备供电的功能,对电信设备的整体性能提高大有益处。
上一篇:基于FPGA的高精度数字电源
下一篇:标准CMOS工艺集成肖特基二极管设计与实现
推荐阅读最新更新时间:2023-10-12 22:26
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC