通用序列汇流排电力传输(USB-PD)标準演变,将掀起新一波USB应用革命。USB在资料传输方面早已成为业界普遍採用的标準协定,而随着更高传输速率的USB 3.0规格问世,更进一步增进其音讯/视讯传输应用的价值。目前已有许多扩充基座(Docking Station)导入USB 3.0方案,仅利用单一USB 3.0连接线就能同步支援两个1,080p显示器、Gigabit乙太网路(Ethernet),以及多个USB 3.0和USB 2.0接口,可用于连接设备,环绕立体声音响,麦克风输入,甚至手机充电功能。
由于各种行动运算装置设计持续朝更轻、更薄的结构演进,因此对缩减传输介面占位空间的需求也更加殷切。为使下世代平板装置和超轻薄笔电 (Ultrabook)更贴近市场需求,相关设计人员正积极投入研发USB 3.0方案,期透过单一接口延展出更多的输入/输出(I/O)介面,甚至能进一步支援更高功率的充电规格,以同步满足用户对平板或笔电的可携性和可扩展性要求。
事实上,目前Windows 8平板装置大多只容纳一个USB 3.0接口,以及一个负责影像传输的接口,再藉由USB 3.0扩充基座提供用户额外连接需求;传统个人电脑(PC)常见的读卡器、乙太网路,以及键盘和滑鼠的连接埠皆已陆续被製造商移除。下一阶段,USB- IF协会正酝酿以USB-PD规范,进一步取代各种电子装置的电源接口(图1)。
扩增大功率充电规范 USB-PD应用潜力爆发
USB 3.0扩充基座几乎可支援所有传统I/O接口,包括资料同步、音讯/视讯传输等,但仍缺乏中大功率的充电能力,无法为一般笔电、Ultrabook及平板提供电力。也因此,USB-IF协会遂将供电技术视为拓展USB应用的布局重点,并于近期发布新的USB-PD规范,将USB功率标準配置由10瓦(W) 提升到100瓦,让USB成为全方位的装置对外连接解决方案。
传统的USB充电架构基于主控端(Host)与设备端(Device)连接模式,由主控端负责向设备端供电,因而增加主控端系统功耗。尤其USB 2.0和USB 3.0因应多元、高速传输需求,分别将功率拉升至500毫安培(mA)、900毫安培,可能产生更严重的系统功耗,将与当前Ultrabook、 Windows 8平板的设计理念相互衝突;况且,即便USB装置端自带电源也无法向主控端供电。
为改进上述不合时宜的USB充电架构,USB-PD标準新增一个机制,让主控端及装置端可互相供电,这意味着主机仍可做为主要的USB传输电力来源,但装置端亦可提供主机电源,以减轻USB主机在执行大量资讯传递或影音同步任务时的耗电量。
与此同时,USB-PD也扩展USB充电电压选项,除既有的5伏特(V)规格外,还加入12伏特和20伏特,在USB介面可承受最高5安培电流的前提下,目前可提供的最大功率为100瓦,并可由设计者灵活调配10、18、36和60瓦解决方案。
USB-PD牵动系统设计转变
随着USB-PD打破既有充电电压限制,笔电、平板製造商均可依产品需求设计不同的供电方案,如笔电一般使用20伏特充电,而平板或其他USB连接器则可使用12伏特方案。
然而,电子装置要导入新一代USB-PD规格,须採用新的缆线和连接器,并通过相关的安全性和协定测试。主要是考量USB升级至中大功率充电后,传统缆线无法完全满足USB-PD的电压/电流额定值,且对装置内部电路和用户使用安全将带来一定程度的影响,所以未来USB缆线和连接器均须增加ID接脚,以提升电路保护功能。此外,USB-PD连接器还须向下相容,以支援现有的USB产品。
短期内,USB-PD因增加系统复杂性,可能使设计成本攀升;不过,其带来的应用效益将更具价值,将改变人们对笔电一定需要电源转换器(Adapter)的旧思维。未来只要一个支援USB-PD的接口就能取代电源转换器,直接为电子装置充电。
此外,对电源供应解决方案业者而言,发展USB-PD的技术挑战还包括周边元件的选用,并须考量电力供应和消耗两个面向,因应5、12和20伏特电压或不同的电流规格,投入更多软硬体研发资源,以改良现有USB介面的5伏特VBus电源线,提高支援电压等级至12或20伏特。
无庸置疑,USB-PD产品能否问世的关键,就在于负责电源讯号通讯的USB VBus设计。新控制方案须达到够高的频率,以免影响传统USB设备,且须搭配符合USB-PD协定的缆线与连接器,才能真正实现中大功率USB充电应用。现阶段,包括威锋电子等USB 3.0晶片商已纷纷投入开发USB-PD方案,将协助系统厂打造充电、资料传输、乙太网路及影音同步连结等功能一应俱全的USB扩充基座,抢攻 Ultrabook、平板周边装置的市场商机。
上一篇:实例演示,带你深入了解开关电源测试
下一篇:技术秘技:为何大容量磷酸铁锂电池需要大功率充电器?
推荐阅读最新更新时间:2023-10-12 22:26
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC