创新的MOSFET封装大大简化电源的设计

最新更新时间:2013-09-28来源: 电子发烧友关键字:电源设计  MOSFET 手机看文章 扫描二维码
随时随地手机看文章

  目前,电源工程师面临的一个主要难题是,随着商用电子产品的功能日益增多,其尺寸不断缩小,留给电源电路的空间越来越少。解决该难题的办法之一就是充分利用在MOSFET技术和封装上的进步。通过在更小尺寸的封装内采用更高性能的MOSFET,业内的一个趋势是从SO-8等标准引线封装向带有底面漏极焊盘的功率封装转变。对于大电流应用,常用的是功率6mm x 5mm封装,例如PowerPAK? SO-8。但对于电流较小的应用,发展趋势是向PowerPAK 1212-8这样的3mm x 3mm功率封装转变。 在这类封装中,RDS(on) 已经足够低,使得这类芯片可以广泛用于笔记本电脑中的10A DC-DC应用中。

  虽然3mm x 3mm功率封装已经使DC-DC电路使用的空间大幅减少,但还是能够把所用的空间再减少一点,以及提高功率密度。实现这个目的的办法之一就是用组合了两个器件的封装替代分立的单片MOSFET。SO-8双芯片功率MOSFET已经使用了很长时间,但是通常只能处理5A以下的负载电流,这对上网本和笔记本电脑中的5V和3.3V电源轨是完全没问题的,但对负载电流为10A或更高的系统来说显然太低了。

  图1  双芯片功率封装

  图1 双芯片功率封装

  这就是为什么制造商努力设计MOSFET的双芯片功率封装的原因,因为这样能大大提高可能的最大电流,而且热性能也比传统的表面贴装封装要好。利用这种功率封装的基本原理是把两片分开的芯片装进一个封装,这种器件就能减少电源电路所需的面积。

  PowerPAIR就是这样的一种封装类型,这种封装的外形尺寸比单片功率6 mm x 5 mm封装 (PowerPAK SO-8)小,最大电流可以达到15A。在笔记本电脑中,一般像这么大的负载电流都会采用两个功率6 mm x 5 mm的封装,加上导线和打标签的面积,以及两个器件的位置摆放,占用的面积超过60mm2。这种双芯片功率封装的尺寸是6.0mm x 3.7mm ,在电路板上占用的面积为22mm2。把电路板空间减少63%对电源工程师是很有帮助的,因为他们给电源电路设计的空间是越来越少了。用传统的SO-8双芯片功率型封装,是无法取得这么大的好处的。

  与两个6 mm x 5 mm功率封装或两个SO-8封装相比,这种器件不但能节省空间,而且能简化设计,比两个3 mm x 3 mm功率封装还能再节省点空间。双芯片功率封装很容易用一个器件替换两个3 mm x3 mm封装,甚至还能在PCB上再省出布线和打标示的空间,如图1所示。因此对5A~15A的DC-DC应用,用这种器件是很合理的设计步骤,也是提高功率密度的方式之一 。

  PowerPAIR双芯片功率封装使用了一种类似DC-DC降压转换器的非对称结构,使优化的高边和低边器件占用相同的封装。如图2所示,低边 MOSFET的导通电阻比高边 MOSFET的低,这会导致焊盘区的大小不一致。

  

  图2 PowerPAIR双芯片功率封装结构图

  事实上,低边MOSFET的导通电阻是器件的关键特性。即使封装尺寸变小了,还是有可能在最高4.5V电压下把RDS(on)降到5mΩ以下。这有助于提高在最大负载条件下的效率,还能让器件工作的温度更低,即便尺寸很小。

  这种器件的另一个好处是布线。从图2中可以看到,封装的引脚使其能很容易地集成进降压转换器的设计方案中。更特殊之处在于,器件的输入是在一侧,输出在另一侧。引脚2和3与DC-DC电路的VIN相对应,是高边MOSFET的漏极。小焊盘也是高边元器件的漏极焊盘。较大的焊盘是电路的开关节点,在这个地方,高边MOSFET的源极和低边MOSFET的漏极在内部连到器件上。这个节点会连到电感器。最后,接地是引脚4和5,是低边MOSFET的源极。引脚1和6 分别连到高边和低边MOSFET的栅极。这种布线很简单,而且减少了用两个器件时发生布线错误的几率。把多个器件组合在一起时需要额外的PCB走线,这种布线还能减少与此种PCB走线相关的寄生电感。

  改用较小外形尺寸双芯片功率封装的另一个好处是能够实现的效率可以帮助提高功率密度。器件安装在单相降压转换器评估板上,条件如下:

  VIN = 12 V, VOUT = 1.05 V, VDRIVE = 5.0V, fsw = 300 kHz, IOUT max. = 15 A

  效率是在整个功率范围内测量的。在15A电流下,效率是87%,器件的外壳温度恰好低于70 °C。峰值效率高于91.5 %。这样的性能有助于在医疗系统中减少功率损耗,节约能量,而且还能实现小外形尺寸的设计,如图3所示。

  图3 示意图

  图3 示意图

  采用6.0mm x 3.7mm外形尺寸的双芯片不对称功率封装是MOSFET封装技术上的重大进步。这种封装使工程师能够改善电源的性能,缩小体积,以及简化设计,同时可实现现在的消费电子产品所要求的高效率或性能。

关键字:电源设计  MOSFET 编辑:探路者 引用地址:创新的MOSFET封装大大简化电源的设计

上一篇:MOS管正确选择的步骤
下一篇:仪表放大器MCP6N11入门及应用案例分析

推荐阅读最新更新时间:2023-10-12 22:27

新型IGBT/MOSFET驱动模块SKHI22A/B
摘要:SKHI22A/B是德国西门康(SEMIKRON)公司推出的一种新型的IGBT/MOSFET的驱动模块。文章介绍了SKHI22A/B的主要结构特点和功能,给出了它的具体应用电路。 关键词:IGBT;驱动模块 ;SKHI22A/B 1 概述 SKHI系列驱动模块是德国西门康(SEMIKRON)公司推出的一种新型IGBT/MOSFET驱动模块。SKHI系列驱动模块主要有以下特点: ●仅需一个不需隔离的+15V电源供电 ●抗dV/dt能力可以达到75kV/μs ●控制电路和IGBT主电路之间的隔离电压可以达到4kV ●输出峰值电流可以达到30A ●同一桥臂上下开关管驱动信号具有互锁功能,可以防止两
[应用]
太阳能直流不间断电源设计
    利用太阳能对电池的充电形成不间断直流电压输出是本电路的特点,该电路由恒流充电器(IC1)、过充电保护电路(IC2与T1)和线性开关稳压器(IC3)组成。     恒流充电器IC1的极限电流为60mA,一旦发生对电池B的过充电(如在充足太阳光照射下或负载电流较小时),电池电压上升,则P1滑动端电压升高,经可调稳压器IC2进行控制,使T1饱和导通,经R5与R7旁路部分或全部电流到地,LED1发光,防止过充电的发生。稳压器IC3的输出电压、电流与选用型号(LT1300或LT1301)和跳线接口S1与S2状态有关。     如附表所示,当S1接上跳线时可获得+5V(LT1300)或+12V(LT1301)的直流电压输出
[电源管理]
太阳能直流不间断<font color='red'>电源设计</font>
从印制板到反激电源 开关电源设计
  谈多年开关电源的设计心得,从开关电源印制板的设计、印制板布线、印制板铜皮走线、铝基板和多层印制板在开关电源中的应用,到反激电源的占空比,绝对的实践精华!   开关电源印制板的设计   首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。   1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避
[电源管理]
从印制板到反激电源 开关<font color='red'>电源设计</font>
MOSFET SGT 5年内不会为其他产品取代
6月5日,捷捷微电(上海)科技有限公司董事、总经理孙闫涛接受机构调研时表示,公司和捷捷微电的结缘其实是顺势而为,随着国产化的机遇到来,贸易战和经济战其实就是科技战。捷捷微电在晶闸管这个细分领域做得十分的好,在国内属于龙头企业,但是晶闸管这块的市场空间有限,意味着增长也会很有限。为了企业更好的发展,未来需要拓展更多的产品线,捷捷微电去年完成了定增,是基于产业视角对公司产品结构的优化。功率MOSFET这块的市场空间很大,大约有70亿美金-80亿美金左右的市场规模,并且应用越来越广。捷捷微电在业界的口碑很好,品牌知名度很高,并且可以为我们团队提供一个很好的发展平台,可以形成产业协同和优势互补。 目前,捷捷微电(上海)主要的目标客户群体
[手机便携]
基于LM2576的高可靠MCU电源设计
摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变MCU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降%26;#215;I负荷),其工作效率仅为30%~50% 。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密
[应用]
基于AVR 单片机的数字正弦逆变电源设计
  逆变电源应用广泛,特别是精密仪器对逆变电源性能要求更高。好的逆变电源不仅要求工作稳定、逆变效率高、输出的波形特性好、瞬态响应特性好,还要求逆变电源小型化、智能化、并且具备可扩展性。因此,这里提出一种基于AVR 系列单片机AT90PWM2 的数字正弦逆变电源, 前级SG3525A采用PWM 控制升压电路实现输入和过热保护。后级单片机AT90PWM2 使用单极性倍频SPWM 控制方式进行全桥逆变,且进行输出保护。   1 总体设计及工作原理   逆变电源的系统整体框图如图1 所示,系统的主电路采用前级推挽升压和后级全桥逆变的2 级结构 ,这样可以避免使用工频变压器,有效降低电源的体积和质量,提高逆变效率。其工作原理为:
[单片机]
基于AVR 单片机的数字正弦逆变<font color='red'>电源设计</font>
TI推用于电机控制的业界最小栅极驱动器和功率MOSFET解决方案
近日,德州仪器 (TI) 推出两款新型器件,有助于减小电机驱动应用的尺寸和重量。当两者结合使用时,DRV832x无刷直流(BLDC)栅极驱动器和CSD88584/99 NexFET™电源模块只需占用511 mm2的电路板空间,仅为其他同类解决方案的一半。 DRV832x BLDC栅极驱动器采用智能栅极驱动架构,省去传统架构中用于设置栅极驱动电流的24个部件,使设计人员能够轻松调整场效应晶体管(FET)开关,从而优化功耗和电磁兼容性。CSD88584Q5DC和CSD88599Q5DC电源模块利用独特的堆叠式晶片封装结构的两个FET,使功率密度提高一倍,并最大限度地减少并联FET中典型的FET电阻和寄生电感。 紧凑的18伏BLDC电机
[电源管理]
TI推用于电机控制的业界最小栅极驱动器和功率<font color='red'>MOSFET</font>解决方案
在半桥谐振转换器中提升次级端同步整流器功率效率的控制方法分析
温室效应和日渐枯竭的地球资源使得功率电路设计中的节能要求变得越来越重要。设计人员正在寻求效率更高、功耗更低的解决方案,以期减少不必要的能量损失。利用谐振电感和谐振电容的LLC 谐振转换器,使用零电压开关(ZVS)或零电流开关(ZCS)可获得更加高效的解决方案。虽然LLC谐振转换器具有更高的效率,采用不连续模式(DCM)或临界导通模式(BCM)工作的次级端 MOSFET 的电流可能引起功率损耗。本文将讨论如何使用 次级端同步整流器 电路来降低功率损耗,探讨使用次级端电流使MOSFET同步导通和关断的控制方法,以及使用LLC初级端栅极信号来控制MOSFET的电压和导通时间的方法。 I. 前言:半桥LLC转换器 为了获得更高
[电源管理]
在半桥谐振转换器中提升次级端同步整流器功率效率的控制方法分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved