MOS管正确选择的步骤

最新更新时间:2013-09-28来源: 电子发烧友关键字:MOS管  正确选择 手机看文章 扫描二维码
随时随地手机看文章


  正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。

  第一步:选用N沟道还是P沟道

  为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。

  要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。

  第二步:确定额定电流

  第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。

  选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。

  技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。

  在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。

  第三步:确定热要求

  选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

  器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。

  雪崩击穿是指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加。该电流将耗散功率,使器件的温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。对最终用户而言,这意味着要在系统中采用更大的封装件。

  第四步:决定开关性能

  选择MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/ 源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff)。MOSFET开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。

关键字:MOS管  正确选择 编辑:探路者 引用地址:MOS管正确选择的步骤

上一篇:电源设计中如何巧用电容
下一篇:创新的MOSFET封装大大简化电源的设计

推荐阅读最新更新时间:2023-10-12 22:27

MOS管发热分析
做 电源设计 ,或者做驱动方面的电路,难免要用到 MOS管 。MOS管有很多种类,也有很多作用。做电源或者驱动的使用,当然就是用它的开关作用。 无论N型或者P型MOS管,其工作原理本质是一样的。MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。其主要原理如图:图1。   图1 MOS管的工作原理 我们在开关电源中常用MOS管的漏极开路电路,如图2漏极原封不动地接负载,叫开路漏极,开路漏极电路中不管负载接多高的电压,都能够接通和关断负载电流。是理想的模拟开关器件
[电源管理]
<font color='red'>MOS管</font>发热分析
降压转换器:选择正确的电容是关键
虽然降压转换器的输入电容一般是电路中最为重要的电容,但通常其并未得到人们足够的重视。 在满足严格的纹波和噪声要求时,传统电源设计方法过多地强调输出电容的选择和布局。客户愿意为高性能部件花钱,但就目前而言常常被忽略的输入电容,对于一种成功的降压转换器设计来说更为重要。其高频特性和布局将决定设计的成功与否。在选择和布局输出电容方面,确实有更大的自由度。即便是在满足输出噪声要求方面,选择和布局输入电容也很重要。 输入电容相关应力比输出电容相关应力要更大,主要表现在两个方面。输入电容会承受更高的电流变化率,其布局和选择对限制主开关电压应力以及限制进入系统的噪声至关重要。另外,它更高的均方根 (RMS) 电流应力和潜
[电源管理]
八大Tips助你正确选择红外热像仪
  红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。下面简单整理了八大要素供朋友们参考。   一、像素   首先要确定购买红外热像仪的像素级别,大多红外热像仪的级别和像素有关。民用红外热像仪中相对高端的产品像素为640*480=307,200,此高端红外热像仪拍摄的红外图片清晰细腻,在12米处测量的最小尺寸是0.5*0.5cm;中端红外热像仪的像素为320*240=76,800,在12米处测量的最小尺寸是1*1cm;低端红外热像仪的像素为160
[测试测量]
正确选择放大器来设计扬声器的方法
  随着时间的推移,便携式设备音频放大电路的使用模型已经得到了长足的发展。例如:在蜂窝电话的主要功能还是简单地从靠近耳朵的扬声器再现语音时,听筒仅需非常小的功率。另外,像总谐波失真(THD)、噪声和信噪比(SNR)等音频质量也很少需要考虑。   语音一般由高峰值因数、低占空比的信号组成,因此,语音需要很低的平均功率,而在效率方面则无需多加考虑。由于射频和显示功能在蜂窝电话的总功耗中占主要部分,因此大多数效率问题都涉及非音频电子元器件。   但最近,蜂窝电话和其它便携式电子产品都集成了听筒、耳机扬声器和近场扬声器(用于免提操作)。另外,再现音乐(MP3文件)和电影声道也给音频通道带来了沉重的负担。结果,音频通道的功耗不再是枝节问题,
[嵌入式]
电源开关设计秘笈:如何选择正确的工作频率
   为您的电源选择正确的工作频率   随着现在对更高效、更低成本电源解决方案需求的强调,我们创建了该专栏,就各种电源管理课题提出一些对您有帮助的小技巧。该专栏面向各级设计工程师。无论您是从事电源业务多年还是刚刚步入电源领域,您都可以在这里找到一些极其有用的信息,以帮助您迎接下一个设计挑战。   为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。   我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作
[电源管理]
电源开关设计秘笈:如何<font color='red'>选择</font><font color='red'>正确</font>的工作频率
浅谈锂电池保护电路中功率MOS管的作用
  通常,由于磷酸铁锂电池的特性,在应用中需要对其充放电过程进行保护,以免过充过放或过热,以保证电池安全的工作。短路保护是放电过程中一种极端恶劣的工作条件,本文将介绍功率MOS管在这种工作状态的特点,以及如何选取功率MOS管型号和设计合适的驱动电路。   电路结构及应用特点   电动自行车的磷酸铁锂电池保护板的放电电路的简化模型如图1所示。Q1为放电管,使用N沟道增强型MOS管,实际的工作中,根据不同的应用,会使用多个功率MOS管并联工作,以减小导通电阻,增强散热性能。RS为电池等效内阻,LP为电池引线电感。   正常工作时,控制信号控制MOS管打开,电池组的端子P+和P-输出电压,供负载使用。此时,功率MOS管一直处
[电源管理]
浅谈锂电池保护电路中功率<font color='red'>MOS管</font>的作用
MOS管栅极电阻在工业电源中的作用
  1.是分压作用 2.下拉电阻是尽快泄放栅极电荷将MOS管尽快截止 3.防止栅极出现浪涌过压(栅极上并联的稳压管也是防止过压产生) 4.全桥栅极电阻也是同样机理,尽快泄放栅极电荷,将MOS管尽快截止。避免栅极悬空,悬空的栅极MOS管将会导通,导致全桥短路 5.驱动管和栅极之间的电阻起到隔离、防止寄生振荡的作用
[电源管理]
<font color='red'>MOS管</font>栅极电阻在工业电源中的作用
如何正确地为太阳能逆变器应用选择IGBT
如今市场上先进功率元件的种类数不胜数,工程人员要为一项应用选择到合适的功率元件,的确是一项艰巨的工作。就以太阳能逆变器应用来说,绝缘栅双极晶体管 ( IGBT ) 能比其他功率元件提供更多的效益,其中包括高载流能力、以 电压 而非 电流 进行控制,并能使逆 并联 二极管 与IGBT配合。本文将介绍如果利用 全桥 逆变器拓扑及选用合适的IGBT,使太阳能应用的功耗降至最低。 太阳能逆变器是一种功率 电子 电路 ,能把太阳能电池板的直流电压转换为交流电压来驱动家用电器、照明及电机工具等交流负载。如图1所示,太阳能逆变器的典型架构一般采用四个开关的全桥拓扑。 在图1中, Q1 和Q3被指定为高
[电源管理]
如何<font color='red'>正确</font>地为太阳能逆变器应用<font color='red'>选择</font>IGBT
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved