正确的选择放大器来设计扬声器的方法

发布者:徽宗古泉最新更新时间:2017-12-31 来源: eefocus关键字:放大器  扬声器  扬声器放大器 手机看文章 扫描二维码
随时随地手机看文章

  随着时间的推移,便携式设备音频放大电路的使用模型已经得到了长足的发展。例如:在蜂窝电话的主要功能还是简单地从靠近耳朵的扬声器再现语音时,听筒仅需非常小的功率。另外,像总谐波失真(THD)、噪声和信噪比(SNR)等音频质量也很少需要考虑。

  语音一般由高峰值因数、低占空比的信号组成,因此,语音需要很低的平均功率,而在效率方面则无需多加考虑。由于射频和显示功能在蜂窝电话的总功耗中占主要部分,因此大多数效率问题都涉及非音频电子元器件。

  但最近,蜂窝电话和其它便携式电子产品都集成了听筒、耳机扬声器和近场扬声器(用于免提操作)。另外,再现音乐(MP3文件)和电影声道也给音频通道带来了沉重的负担。结果,音频通道的功耗不再是枝节问题,而是成为了功率泄漏的主要渠道。而且,低保真度的声音再现也成为了过去时,如今的音频传输要求100dB以上的信噪比和小于0.1%的总谐波失真。

  耳机放大器

  声学音频功率放大器一般分成两种工作类型:耳机放大器(HPA)和扬声器放大器(SPA)。耳机放大器必须驱动32Ω或16Ω扬声器高达30mW,并且还要保持非常高的音频质量(典型值是105dB SNR,0.01%THD和20kHz带宽)。不过,对耳机应用来说,30mW是一个非常高的输出功率,它高到足以使人感到疼痛。典型的收听电平在100μW至1mW之间。

  在32Ω负载上产生30mW功率需要1.4V的峰值信号摆幅,同时,还要为IR压降准备额外的余量。因此,通常使用±1.8V的供电电压来达到30mW的输出功率。

  典型的耳机线缆包含3根:两根分别用于左右驱动信号,另一根则用于公共的返回地。此外,还可能需要增加其它线路用于音量控制、静音或麦克风输出。在这样的配置下,立体声耳机放大器必须采用单端输出。

  但是如果供电采用单电压轨,这将导致很大的直流偏置问题。为了避免使用大的交流耦合电容,大多数耳机放大器采用分离电源供电,即通常用一个片上逆变电荷泵产生负电压轨。

  大多数耳机放大器采用线性放大器(例如:A/B类输出级的变体)来实现耳机放大器所要求的高品质音频性能。传统的A/B类放大器由A类和B类工作模式组成。这类放大器一般设计为在低输出功率时主要工作在A类。由于交越失真很小,所以A类状态可以提供最佳的音频性能。

  B类工作模式在高输出电平时生效,这时,它具有比A类更高的效率。但是,B类工作模式具有较高的交越失真。总之,A/B类放大器可以取得非常低的总谐波失真,因为交越失真大部分可以由闭环反馈衰减掉。

  在恒定供电条件下,A/B类放大器效率正比于输出电压摆幅。为了挽回低输出功率时的效率损失,可以使用“G类工作模式”技术来降低低电平信号时的电压轨值。

  需要用一个电路来检测输入信号电平。如果该电平超过一个预先确定的门限值,就可以根据需要将电压轨抬高到更高的值。大多数G类放大器具有两个电压轨值:一个用于大信号摆幅的高轨值(VDD),以及一个用于低电平信号的只有VDD一小部分(如VDD的1/2)的低轨值。这样,在满刻度输出功率1/4处的信号效率近似等于满刻度功率信号时的效率。

  G类工作模式的一个变体被命名为“H类工作模式”,此时供电轨随着峰值信号要求连续变化。这样可以最大限度地提高所有信号电平点的效率。但由于电路设计和工艺限制的原因,H类工作模式的最小电压轨值是受限的。

  一些制造商将术语“H类”套用到实际上是工作在G类的耳机放大器上。真正的H类工作模式在目前的IC耳机放大器中几乎很少见到。

    扬声器放大器

  便携式电子产品中的扬声器放大器(用于免提和扬声器话机工作等近场应用)通常需要驱动8Ω或4Ω的扬声器。典型的收听电平落在100至300mW范围,但IC放大器通常能够提供1至2.7W的平均输出功率,峰值输出则接近该电平的两倍。

  为了在8Ω负载上产生1.7W功率,扬声器放大器必须向扬声器负载提供5.2V峰值或约3.7V有效值的电压。考虑到IR压降方面的余量,一个1.7W的扬声器放大器一般使用5.5V的电压轨。如果用更大的开关可以实现更低的IR压降,那么稍高于1.8W也有可能。这些输出功率值具有1%的总谐波失真。在总谐波失真为10%时,可以产生更大的输出功率。

  一般来说,在便携式音频产品中,近场扬声器不会再现高质量音频。因此,扬声器放大器通常无需达到耳机放大器的音频性能。典型的音频性能是全功率时1%的总谐波失真,10kHz带宽和94dB信噪比。

  与耳机放大器相比,效率对扬声器放大器来说是一个更加重要的因素,因为扬声器放大器的功率电平要高得多。耳机放大器的效率一般低于50%--这并不算高,但与具有4.7Wh容量的电池相比却是很小的功耗(对正常收听电平来说约为电池容量的0.01%)。然而,工作在1W的扬声器放大器同样50%的功耗却等于0.5W,或约为电池容量的10%.

  D类扬声器放大器

  耳机放大器和扬声器放大器工作效率对比的重要性,是在一个或另一个收听模式中所花时间的函数。比方说,蜂窝话机在扬声器模式时会消耗更多的功率,因此效率就变得非常重要。可以使用线性放大器(如A/B类)来驱动扬声器(过去经常如此),但今天首选的扬声器驱动器却是D类放大器。D类扬声器放大器可以在很宽的输出功率电平内保持高效率,而只有在功率电平低于全功率的1%至2%时,效率才开始下降。

  D类放大器不是线性的,而是一种开关放大器。在开关放大器中,高频载波(相对于音频频带)会对音频输入信号进行调制,一般从100kHz至1MHz.因此,输出级可以被“数字”切换(轨到轨),从而将输出功率器件置于开(on)或关(off)状态,这正是最高效率点。

  开关放大器通常配置在电桥模式,以差分方式驱动扬声器负载,这样可以避免使用输出交流耦合电容。因为电桥模式的放大器每个通道使用4个功率开关,所以体积是单端输出级放大器的两倍。然而,在给定电压轨条件下,电桥模式输出级的输出功率却是单端放大器的4倍。

  D类放大器可以实现很高的效率,一般超过90%.但是使用这类放大器也有缺点。因为音频内容现在是调制过的信号,所以必须通过某种低通滤波器(LPF)解调后,才能驱动扬声器负载。不会造成效率损失或失真问题的大功率LPF不仅体积大,而且价格昂贵,因此,在便携式设备中无法使用。

  然而,便携式设备中的扬声器本身就是一个LPF,它可以向典型的载频提供高阻抗。在像蜂窝话机这样的便携式设备中,经常将扬声器用作LPF,并用它解调开关放大器的输出信号。有时,在D类的输出端串联一些铁氧体磁珠来减少大功率开关输出所产生的电磁干扰(EMI)。由于扬声器具有高阻抗,其调制信号仅耗散非常小的能量,因此能够保持很好的效率。

  但是当扬声器放大器输出和扬声器负载之间使用长线,并且没有独立的低通滤波器时,使用开关放大器会带来严重的EMI问题。基于这个原因,如果耳机位于长线的末端,耳机放大器就不会使用D类放大器。因此,D类放大器应靠近扬声器负载,以避免产生过多的电磁干扰辐射。

  业界也经常使用其它类型的扬声器放大器,但大多数是本文所述的线性和开关模式放大器设计的变体。在现代便携式电子产品中,对更高电池能量的需求与日俱增。用于视频内容的高分辨率大型彩色显示器,高分辨率相机和闪存,以及大功率音频输出都会影响电池寿命。为了延长电池运行时间,提高音频扬声器放大器的效率随即成为了重要的设计考虑因素。


关键字:放大器  扬声器  扬声器放大器 引用地址:正确的选择放大器来设计扬声器的方法

上一篇:智能手机的音频放大器方案
下一篇:电视应用的ECO待机和关闭模式简介

推荐阅读最新更新时间:2024-05-03 02:14

东芝推出具有业界领先低噪音水平的CMOS运算放大器
东京--东芝公司(TOKYO:6502)旗下存储与电子元器件解决方案公司今日宣布推出实现业界领先 低噪音水平的新运算放大器“TC75S67TU”。样品发货即日启动,量产计划于8月启动。 随着物联网市场的不断扩张,市场对用于放大传感器 检测到的小信号的低噪音运算放大器的需求日益增长。东芝的新IC对工艺进行了优化,实现了业界领先的低等效输入噪声电压,适合于传感器模拟前端(AFE)电路。而且,该新IC采用CMOS工艺,实现了低偏置电流,有助于延长 小型物联网设备电池的工作时间。 应用场合 • 放大各种类型传感器的小信号 • 物联网模块、硬盘驱动器、传感器模块、笔记本电脑、家用电器 特点 • 低等效输入噪声电压: VNI=16nV/
[模拟电子]
东芝推出具有业界领先低噪音水平的CMOS运算<font color='red'>放大器</font>
基于MSP430F149的阻抗测量系统设计
引 言 医学阻抗测量是利用生物组织与器官的电特性及其变化,提取与生物体生理、病理状况相关的生物医学信息的一种检测技术。它通常借助于驱动电极向检测对象送入一微小的交变电流(或电压)信号,同时测量两极的电压(或电流)信号,从而计算出相应阻抗,然后应用于不同目的。 不同组织的阻抗值也不相同,因此阻抗可以作为区分不同组织的一项重要指标;同时随着生理活动的变化,同一组织阻抗值也会发生改变,因此阻抗可以作为检测组织是否发生病变的一个依据。 生物组织的阻抗受多种因素影响呈现出各种特性,其中最主要的就是它的频率特性。本设计通过MSP430F149控制AD9852产生不同幅度、不同频率的正弦波。该正弦波经过滤波、放大后作用于人体,
[单片机]
基于MSP430F149的阻抗测量系统设计
带自校准功能的低功耗运算放大器
价格合理的先进个人医疗设备的大量涌现,正在改变着整个保健行业,消费者可以在家中或旅途中监测自身的生命体征和其他关键指标,而无需劳命伤财地亲自到医院看病。根据Gartner公司的调查,便携式消费类医疗设备,如血糖检测仪、血压计、胰岛素泵和心率检测器等是医疗设备市场中增长最快的部分。Databeans公司最近所做的一项医疗半导体报告也指出,未来五年家用医疗设备市场将有9%的增长(复合年增长率,CAGR)。 个人医疗设备市场的迅速增长源于多种因素:老年人需要经常性地进行健康体检、传统医疗服务费用高昂、消费者逐渐意识到保健设备的益处、个人医疗设备可以方便地在网上或零售店里买到、半导体技术的不断进步,使得这些消费类保健设备日益成熟、
[模拟电子]
带自校准功能的低功耗运算<font color='red'>放大器</font>
提高放大器的稳定性的方法
一是从晶体管本身想办法,减小其反向传输导纳yre的值。 二是从电路上设法消除晶体管的反向作用,使它单向化,具体方法有中和法与失配法。 中和法通过在晶体管的输出端与输入端之间引入一个附加的外部反馈电路(中和电路),来抵消晶体管内部参数yre的反馈作用。 用一个电容CN来抵消yre的虚部(反馈电容)的影响,就可达到中和的目的。 固定的中和电容CN只能在某一个频率点起到完全中和的作用,对其它频率只能有部分中和作用。中和电路的效果很有限。 失配法 信号源内阻不与晶体管输入阻抗匹配,晶体管输出端 负载阻抗不与本级晶体管的输出阻抗匹配。 原理:由于阻抗不匹配,输出电压减小,反馈到输入 电路的影响也随之减小。使增益下降
[模拟电子]
提高<font color='red'>放大器</font>的稳定性的方法
功率放大器配合信号源在超声导波激励测试中的应用
超声导波检测技术与常规的无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声波所用的激励源采用大功率信号源驱动激励的方法,放大并传播在管道中接收到的超声导波回波信号,利于缺陷检测的分析和处理。针对市场上常规信号源输出电压低,带负载能力弱,无法驱动超声波探头、换能器等大功率容性负载的实际问题,Aigtek推出了一种可输出大功率437W,频率DC-500KHz的功率放大器。 超声波是声波的一部分,是人耳听不见、频率高于20KHZ的声波,它和声波有共同之处,即都是由物质振动而产生的,并且只能在介质中传播。功率放大器是为超声换能器提供电能的关键部分,它主要用来激励压电超声换能器将功率放大器提供的电能转化为机械能。 超声激励
[测试测量]
功率<font color='red'>放大器</font>配合信号源在超声导波激励测试中的应用
基于FPGA的数字幅频均衡功率放大器的解决方案
  摘要:提出了一种基于FPGA 的数字幅频均衡功率放大器的设计方案。系统在完成基于AD620前级小信号放大电路设计的基础上,分析了阻带网络的幅频特性;结合分析结果与FIR 滤波算法给出了相应的滤波器组成方案。后级功率放大电路采用分立MOS 管实现。   在现代通信系统中,码间干扰是制约通信质量的重要因素。为了减小码间干扰,需要对信道进行适当的补偿,以减小误码率,提高通信质量,接收机中能够补偿或减小接收信号码间干扰的补偿器称为均衡器。本文提出了一种基于FPGA 的数字幅频均衡功率放大器的解决方案。    1 系统总体设计   本文设计了一种数字信号幅频均衡功率放大器的实现方案。设计主要由四个模块组成。分别为小信号放大,带阻网
[嵌入式]
基于FPGA的数字幅频均衡功率<font color='red'>放大器</font>的解决方案
高速电压输出型对数放大器AD8310
    摘要: AD8310是AD公司生产的一种高速电压输出型对数放大器。它可对DC到440MHz的频率缩技术,其动态范围高达95dB,而误差仅为±3dB。该器件性能稳定且易于使用,外部不需其它重要元件。文中介绍了该芯片的内部结构、原理以及应用设计方法。     关键词: 对数放大器 增益 斜率 AD8310 1 概述 AD8310是一个高速电压输出、解调频率范围为DC~440MHz的对数放大器,它内含六个串联的放大器/限幅器,且每个放大器/限幅器的小信号增益均为14.3dB,在900MHz时带宽为-3dB。它内使用了9个检测器,检波范围从-91dBV~+4dBV(我们定义rms为1V的正弦波的幅值为0d
[半导体设计/制造]
意法推出集成匹配网络和嵌入省电功能的GPS低噪放大器IC
意法半导体日前扩大了该公司硅单片微波集成电路(MMIC)放大器产品系列,新推出一个为具有GPS功能的电子设备设计的单片放大器IC。 新产品SMA661AS是第一个集成匹配网络和嵌入省电功能的低噪放大器芯片,由于只需一个外部输入电容,新IC大幅度降低了材料成本和PCB板占用空间,是一个理想的成本低廉的尺寸紧凑的GPS低噪放大器(LNA)。 这个全集成的SMA661AS采用ST先进的70GHz硅锗BiCMOS制造工艺,在1.575GHz GPS频率下,该芯片的射频性能(RF)十分优异,功率增益高达17dB,噪声系数仅为1.4dB,电流消耗量8.5mA。新产品具有无条件的稳定性能,待机电流仅为10nA,这些参数在-40℃到+85℃的
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved