功率放大器配合信号源在超声导波激励测试中的应用

发布者:ZenMaster123最新更新时间:2022-01-06 来源: eefocus关键字:功率放大器  信号源 手机看文章 扫描二维码
随时随地手机看文章

超声导波检测技术与常规的无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声波所用的激励源采用大功率信号源驱动激励的方法,放大并传播在管道中接收到的超声导波回波信号,利于缺陷检测的分析和处理。针对市场上常规信号源输出电压低,带负载能力弱,无法驱动超声波探头、换能器等大功率容性负载的实际问题,Aigtek推出了一种可输出大功率437W,频率DC-500KHz的功率放大器。


超声波是声波的一部分,是人耳听不见、频率高于20KHZ的声波,它和声波有共同之处,即都是由物质振动而产生的,并且只能在介质中传播。功率放大器是为超声换能器提供电能的关键部分,它主要用来激励压电超声换能器将功率放大器提供的电能转化为机械能。

超声激励源主要原理:

超声激励源实质上就是一个功率信号发生器,它产生一个与探头、换能器、压电陶瓷谐振频率一致的正弦波信号,经过功率放大器放大后,使得大功率电信号激励探头等产生机械振动,从而产生超声波。


ATA-4052功率放大器介绍:

ATA-4052是一款理想的可放大交、直流信号的单通道高压功率放大器。最大输出310Vp-p(±155V)电压,437W功率,可以驱动高压功率负载。电压增益数控可调,一键保存常用设置,为您提供了方便简洁的操作选择,可与主流的信号发生器配套使用,实现信号的完美放大。

基于Aigtek对功率放大器多年的测试研究,其主要产品优势:宽频带·高速·高电压、双极性、大功率。


ATA-1000的频带宽度为DC∼24MHz、上升速率为2000V/µs,即使对于上升迅速的脉冲信号和复杂波形信号也能够完美实现。


ATA-2000的频带宽度为DC∼1MHz、最大输出电压为1600Vp-p,即使对于有高压需求的压电元件和显示元器件,也能够富富有余地进行驱动。


ATA-3000的功率为810W,提供大功率的电磁场线圈驱动,同时所有的都能从直流开始输出的, 所以能够轻松实现信号发生器提供的任意波形的放大。


ATA-4000高压功率放大器输出功率为437W,频率宽度为DC-1MHz,可同时满足驱动高压大功率型负载,可双极性输出,匹配任意型号品牌的信号发生器并放大各种波形。

关键字:功率放大器  信号源 引用地址:功率放大器配合信号源在超声导波激励测试中的应用

上一篇:院校实验室该如何选择示波器呢
下一篇:泰克示波器选型常用的指标有哪些

推荐阅读最新更新时间:2024-10-18 23:17

功率放大器配合信号源超声导波激励测试中的应用
超声导波检测技术与常规的无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声波所用的激励源采用大功率信号源驱动激励的方法,放大并传播在管道中接收到的超声导波回波信号,利于缺陷检测的分析和处理。针对市场上常规信号源输出电压低,带负载能力弱,无法驱动超声波探头、换能器等大功率容性负载的实际问题,Aigtek推出了一种可输出大功率437W,频率DC-500KHz的功率放大器。 超声波是声波的一部分,是人耳听不见、频率高于20KHZ的声波,它和声波有共同之处,即都是由物质振动而产生的,并且只能在介质中传播。功率放大器是为超声换能器提供电能的关键部分,它主要用来激励压电超声换能器将功率放大器提供的电能转化为机械能。 超声激励
[测试测量]
<font color='red'>功率放大器</font>配合<font color='red'>信号源</font>在<font color='red'>超声</font><font color='red'>导波</font><font color='red'>激励</font><font color='red'>测试</font>中的应用
基于DS89C430的超声导波激励信号源的设计
在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快
[单片机]
基于DS89C430的<font color='red'>超声</font><font color='red'>导波</font><font color='red'>激励</font><font color='red'>信号源</font>的设计
DS89C430的超声导波激励信号源的设计
  在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。
[单片机]
DS89C430的<font color='red'>超声</font><font color='red'>导波</font><font color='red'>激励</font><font color='red'>信号源</font>的设计
用于激励超声导波激励信号源的设计方法
  在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。
[电源管理]
用于<font color='red'>激励</font><font color='red'>超声</font><font color='red'>导波</font>的<font color='red'>激励</font><font color='red'>信号源</font>的设计方法
用于激励超声导波激励信号源的设计方法
在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。若采用
[电源管理]
用于<font color='red'>激励</font><font color='red'>超声</font><font color='red'>导波</font>的<font color='red'>激励</font><font color='red'>信号源</font>的设计方法
基于DS89C430的超声导波激励信号源的设计
  在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速度最快。
[测试测量]
基于DS89C430的<font color='red'>超声</font><font color='red'>导波</font><font color='red'>激励</font><font color='red'>信号源</font>的设计
基于DS89C430的超声导波激励信号源的设计
    在应用于管道缺陷检测的众多无损检测技术当中,超声导波检测技术与常规无损检测方法相比,具有检测距离长,检测速度快等突出优点。超声导波在管道中传播时存在多模态与频散特性,若超声导波所用的激励源仍采用常规超声检测时宽带激励的方法,则在管道中所激发出的超声导波,将会发生频散,即不同频率的超声导波其群速度也不一样,这样会使管道中接收到的超声导波回波信号的幅值微弱,不利于缺陷检测的分析与处理,频散严重时可能无法得到缺陷回波信号。通过分析频散曲线可知,在某一频率范围内,某一模态的导波几乎不发生频散,纵向轴对称导波模态L(O,2)就是其中的一种,L(0,2)模态在一定的频率范围(40~500 kHz)内其传播速度几乎保持不变,且传播速
[模拟电子]
基于SoPC的超声导波激励信号发生器设计
摘 要: 基于SoPC技术设计了一种专门激励管道超声导波的信号发生器。重点阐述了导波专用DDS IP核的设计方法。发生器以MicroBlaze软核处理器为控制核心,单片FPGA辅以必要的少量外围硬件电路,易于扩展升级。实验结果表明,输出的信号精度高、噪声小、稳定性好,频率连续可调,可方便地应用于管道超声导波检测。 关键词: SoPC; MicroBlaze; DDS; 超声导波; 激励信号 在管道缺陷检测当中,超声导波检测技术与传统无损检测方法相比具有沿传播路径衰减小,传播距离远,引起的质点振动能遍及构件内部和表面的特点,因此表现出更大优势 。超声导波在传播过程中存在多模态和频散特性,若激励源选择不当,导波发生严重频散
[嵌入式]
基于SoPC的<font color='red'>超声</font><font color='red'>导波</font><font color='red'>激励</font>信号发生器设计
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved