EMI滤波器的精确设计

最新更新时间:2013-10-05来源: 电子发烧友关键字:EMI  滤波器  精确设计 手机看文章 扫描二维码
随时随地手机看文章

  随着电子技术的发展,电磁兼容性问题成为电路设计工程师极为关注和棘手的问题。 根据多年的工程经验,大家普遍认为电磁兼容性标准中最重要的也是最难解决的两个项目就是传导发射和辐射发射。为了满足传导发射限制的要求,通常使用电磁干扰(EMI)滤波器来抑制电子产品产生的传导噪声。但是怎么选择一个现有的滤波器或者设计一个能满足需要的滤波器?工程师表现得很盲目,只有凭借经验作尝试。首先根据经验使用一个滤波器,如果不能满足要求再重新修改设计或者换另一个新的滤波器。因此,要找到一个合适的EMI滤波器就成为一个费时且高成本的任务。

  电子系统产生的干扰特性

  解决问题首先要了解电子系统产生的总干扰情况,需要抑制多少干扰电压才能满足标准要求?共模干扰是多少,差模干扰是多少?只有明确了这些干扰特性我们才能根据实际的需要提出要求。

  从被测物体的电流路径来看,干扰信号回流路径可能通过地线,或者通过其它电网,如图1所示。通过地线的干扰电流在电源网上产生同相位的共模干扰电压。通过其它线在两根电源线上产生反相的差模干扰电压。干扰电流的路径如图2所示。

  

  图1 干扰信号的回流路径

  

  图2 a)差模干扰滤波和b)共模干扰滤波

  通常有四种技术可进行电源滤波,以便抑制干扰噪声。在实际使用中,经常是混合使用其中的两种,甚至多种技术。它们是:

  正负极电源线之间添加电容,即X电容;

  每根电源线和地线之间添加电容,即Y电容;

  共模抑制(两根电源线上的抑制线圈同向绕线);

  差模抑制(每根电源线有它自己的抑制线圈)。

  电容的作用是将高频干扰电压“短路”,另外,当干扰信号频率很高时,抑制线圈将产生很大的交流阻抗。图2显示了两种滤波类型的结构,其中,LISN是用于测量目的的线性阻抗稳定网络。如果是共模问题引起的干扰,X类型电容基本上没有作用,因为两线上的干扰电压是一样的。因此,了解干扰类型对于选择合理的电路结构将起重要作用,并为解决问题提供技术依据。

  在标准电磁兼容性测试实验室可得到设备的总干扰情况,但无法了解设备的共模干扰和差模干扰特性。为了在测量中分辨共模或者差模干扰信号,通用的仪器是很难实现的。使用专用的传导测试仪,可获得设备的总干扰、共模干扰和差模干扰。测试结果如图3所示。

  

  图3 传统测试仪获得的总干扰、共模干扰和差模干扰  电源输入阻抗特性

  滤波器的制造商给出的滤波器插损是在50W标准阻抗系统中的性能。众所周知,电源的输入阻抗随着频率的变化具有不连续性。阻抗的改变导致滤波器的插损特性产生很大的变化。

  由图4可见,在一个50W的系统中,100mH的滤波器提供约18dB的衰减,但是在一个500W系统中只提供约4dB的衰减。 同样对于100nF电容器;在50W系统中,1MHz时大约23dB的衰减在5W系统中降至7dB。

  上面的例子说明,选择一个具有很高插损的滤波器也不能很好抑制传导噪声的原因是,电源输入端阻抗的影响。因此,设计者除了选择一个合适的滤波器之外,还需要了解电源的阻抗特性、共模阻抗和差模阻抗。阻抗测试可以借助专用的阻抗测试仪或者传导分析仪。一种滤波器的共模阻抗(a)和差模阻抗(b)的变化如图5所示。

  

  图4 a)100uh电感的衰减 b)100nF电容器的衰减

  

  图5 a)共模阻抗和b)差模阻抗的变化

  滤波器的设计

  知道设备的干扰特性和输入阻抗特性后,设计或者选择一个滤波器就变得简单了。如果使用一个现成的滤波器,可以调用过去积累的滤波器数据库,比对滤波器参数,找到一个合适的滤波器。如果没有合适的或者想专门设计一个专用滤波器,可以借助专用的滤波器设计软件。在确定一个滤波器模式后输入滤波器一些简单的约束条件,设计软件根据阻抗特性自动计算出最合适的组件值,以及提供最合适的衰减。(如图6所示)

  

  图6 一种由软件设计的最佳滤波器

  设计结果

  在对某产品进行了干扰特性和阻抗特性测试后,需要解决一个低于5MHz的低频干扰问题。专用滤波器设计软件结合前面得到的测试数据给出了滤波器的元件参数:包括470nF的X电容器,2.2nF的Y电容器和15.1mH的共模电感。但是有经验的滤波器设计人员认为采用一个13.5mH共模电感的滤波器是足够了。使用一个13.5mH包括额外高频组件的滤波器的发射情况如图7所示。

  

  图7 最小15mH的系统使用和18mH时的测试结果

  为了验证软件的设计数据,将470nF、2.2nF和18mH的非定制的滤波器迅速连接到系统中,获得中心频率小于5MHz,并且无需高频滤波器。结果清楚地表明,最小15mH的限制是合适的。

  结语

  EMI滤波器的设计应该充分考虑干扰特性和阻抗特性,在阻抗测试和干扰特性测试数据基础上进行设计是精确滤波设计的唯一方法。

关键字:EMI  滤波器  精确设计 编辑:探路者 引用地址:EMI滤波器的精确设计

上一篇:单体锂离子电池应用充电器IC的选择
下一篇:使用BUS端口保护阵列实现有源ESD保护

推荐阅读最新更新时间:2023-10-12 22:27

如何研制大容量航空地面静止变频电源
采用新型电力电子技术的航空地面静止变频电源(以下简称静变电源),与传统的航空电源车相比,具有同样的性能、更小的体积、更低的噪音水平和完全无排放的特点,可有效减少地面综合保障空间和环境污染问题,极大地提高了航空地面电源保障的质量,进入航空领域保障飞机供电和起动已成为必然的发展趋势。 近年来,国内的一些企业相继开发出静变电源产品,但随着新型飞机和机载电子任务系统越来越多地投入使用,这些产品在试用和使用中不同程度地暴露出一些问题。例如对大容量电子任务系统负载的适应性问题,可靠性、维修性问题,技术先进性和自主知识产权问题等。目前尚无一种同类产品按照军工产品科研程序定型列装的,无法适应新型飞机对地面保障质量的要求,这使静变电源在国防建设中的推
[电源管理]
EMI及PCB设计与开关频率详解
本文导读 电源模块发展至今,工程师们都着眼于如何将模块做得更为小型化,轻量化,其实大家都明白可以通过提升开关频率来提高产品的功率密度。但为什么迄今为止模块的体积没有变化太大?是什么限制了开关频率的提升呢? 开关电源产品在市场的应用主导下,日趋要求小型、轻量、高效率、低辐射、低成本等特点满足各种电子终端设备,为了满足现在电子终端设备的便携式,必须使开关电源体积小、重量轻的特点,因此,提高开关电源的工作频率,成为设计者越来越关注的问题,然而制约开关电源频率提升的因素是什么呢?其实主要包括三方面,开关管、变压器和EMI及PCB设计。 一、开关管与开关频率 开关管作为开关电源模块的核心器件,其开关速度与开关损耗直接影响了开关频率
[网络通信]
TI推出宽输入电压四开关降压-升压DC/DC控制器
2015年3月23日,北京讯--- 近日,德州仪器推出一款全新的宽VIN,四开关降压-升压控制器,此控制器可以通过减少电磁干扰 (EMI) 来达到最高功效。LM5175管理3.5V至42V之间的输入电压,并将输出电压稳定在0.8V至55V之间。借助其高灵活性,这款控制器能够为诸如工业PC、USB电力传输、车内无线充电、LED照明、电动汽车、电池充电和电信RF功率放大器等工业和汽车应用提供高性能设计。 最高电源转换性能 TI的LM5175 DC/DC控制器具备高度的灵活性,可用单个器件在宽泛的输出功率范围内解决降压、升压和降压-升压等多样化的应用需求。这些应用的输出功率从几瓦的到百瓦以上均可覆盖
[电源管理]
分析接收机和频谱仪的EMI测试方法和结果的差异
对EMI测试接收机与频谱仪的详细结构和测量原理有了更加全面和深入的理解,并结合EMC仪器标准CISPR16的内容,重新分析接收机和频谱仪的EMI测试方法和结果的差异。 二十年前的这篇文章,总结了接收机与频谱仪的主要区别: 接收机不是连续扫描整个测试频段,而是按照预设步进和驻留时间离散固定点频测量;步进扫描的方式,决定了接收机不需要视频滤波器去滤除视频噪声。 接收机中频带宽定义是-6dB,频谱仪是-3dB。 EMI接收机有标准规定的特殊类型检波器,如QP和CISPR-AV以及CISPR-RMS。 EMI接收机射频前端有预选器,而频谱仪只有镜频滤波器。 另外需要强调测试值的单位,频谱仪默认dBm,接收机默认dBμV,两者都
[测试测量]
分析接收机和频谱仪的<font color='red'>EMI</font>测试方法和结果的差异
基于DSP6713实现的IIR格型自适应滤波器
摘要:区别于普通的FIR,IIR滤波器,为了使滤波器能够按照某种准则自动且较快地达到最佳滤波效果,采用了LMS自适应算法和格型滤波结构相结合的方法。它利用DSP技术在 TMS320C6713 开发板上构建了验证该音频信号处理算法的硬件平台,并在集成开发环境CCS通过DSP的软件编程完成其工程实现。实验结果表明,该滤波器计算复杂度低,实现速度快,具有良好的实时性和滤波效果。 关键词:TMS320C6713;IIR;自适应格型滤波器;LMS算法;CCS 0 引言 在数字信号处理中,常规滤波器或固定滤波器如FIR,IIR滤波器的特性被固定,即作用于输入信号,则产生相应的输出,但是,在实际应用中对滤波器的输出要求往往是明确的,如果滤波
[工业控制]
基于DSP6713实现的IIR格型自适应<font color='red'>滤波器</font>
如何设计EMI兼容的汽车开关稳压器
  不需要完全了解复杂的EMI,即可轻松设计EMI兼容的汽车开关稳压器。本文以没有复杂数学运算的直觉方式,分享成功实现开关稳压器的基本因素,主要包括:斜率控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。   汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性能音
[电源管理]
如何<font color='red'>设计</font><font color='red'>EMI</font>兼容的汽车开关稳压器
使用示波器测试 EMI 辐射干扰
本文讨论了使用实时示波器进行 EMI 辐射干扰测试 的推荐方法,测试设 EMI置以及最佳实践。 引言 手机,蓝牙耳机,卫星广播,AM/FM 广播,无线因特网,雷达,以及其它不计其数的潜在 电磁干扰 源发射出的电磁波混杂在真实世界中,为了确保汽车内的电子元器件仍旧稳健和有效,它们需要在一个受控环境中进行 EMI 干扰测试。 辐射抗扰室 是一个完全密封的传导空间,是一个理想的 EMI 测试环境,因为它能够完全控制空间中产生的电磁场的频率,方向,波长。而且因为电磁场无法进入密闭的空间,在抗扰室测试的汽车部件在测试过程中能够接收精确且高度可控的电磁波。同时,电磁波也无法离开干扰室,用于测试的测量仪器以及在抗扰室外操
[测试测量]
使用示波器测试 <font color='red'>EMI</font> 辐射干扰
汽车电子EMI诊断系统-传导发射诊断系统
传导骚扰测试系统主要测量受试设备(EUT)在正常工作状态下通过电源线、信号端口、控制端口对周围环境所产生的骚扰,测试频率范围主要为9kHz~30MHz。不同产品的骚扰限值由不同标准规定,但基本方法是一样的。系统主要由EMI测试接收机、人工电源网络(LISN)和EMC测试软件组成。其中人工电源网络可以在给定的频率范围内,为骚扰电压的测量提供标准规定的50Ω阻抗,并使受试设备(EUT)与电源相互隔离。标准测试设备:EMI接收机、人工电源网络、OIEMC测试软件、电压探头、电流探头等(根据测试需要决定配置)。本方案主要满足用户进行辐射发射摸底测试(预测试)的需求。传导发射(CE)诊断系统组成 1、HMS-X经济型频谱接收机(与辐射
[嵌入式]
汽车电子<font color='red'>EMI</font>诊断系统-传导发射诊断系统
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved