电磁干扰造成励磁系统保护误动的分析与处理

最新更新时间:2013-11-28来源: 电源网关键字:电磁干扰 手机看文章 扫描二维码
随时随地手机看文章

引言

在整个电力系统中,发电机是电网的心脏,励磁系统则是发电机的心脏,都是起着输送血液的作用,因此励磁系统的稳定运行对机组有着极其重要的作用,我厂为此引进了ABB公司的ABB UNITROL 6800型励磁设备。UNITROL 6800秉承传统优势,在功能性,可靠性,连通性和稳定性都是很高的,但是由于安装问题以及相关部件存在的问题导致的机组跳闸也是时有发生的。

一、故障前现象及检测

1.事前状态

事故发生前我厂的#1机组(300MW)运行,其有功功率为235MW,无功功率为83.9MVar,机组励磁电压204.3V,励磁电流为1804.8A,发电机机端电压分别为20.087kV、20.121kV、20.168kV;机组按照省调命令投入AGC。

2.事件经过

#1机1101断路器突然跳闸,机组全停,6kV快切动作,电源切换至备变。DCS光子牌“励磁系统故障”、“转子过电压”,发变组保护的A、B柜“励磁系统故障”、C柜“主变联跳”动作启动。#1机组运行立即排人员就地检查励磁调节器柜,其液晶面板“转子过电压”报警信号发出。

3.事故检测排查

继电保护人员接到通知后立即派人到现场检查励磁柜内元件,结果未见异常,随后查看机组的故障录波器(TR-2000型),发现发电机B相电流突变量启动,机组机端电压降低,B相电压最低降到16.78kV, B相定子电流最大到9251A。值长电话询问省调,从供电局处得知供电线路系统有故障,另一电厂的高备变内部发生短路故障,造成其所在母线及出线全部跳闸。继电保护人员在得知事情原因后,立即测量灭磁电阻的直流阻值,结果正常,检查励磁装置进线柜内交流保险(F13)无问题。调出UNITROL 6800励磁装置故障录波曲线,根据录波曲线分析此次事故的原因为:系统电压降低导致机端电压下降,励磁装置强励动作,在强励过程中转子过压保护动作造成停机。

二、原因分析

1.励磁系统本身的情况

#1发变组励磁系统用的是ABB公司的UNITROL 6800型,它采用IEEE64位浮点运算控制器,采用了当今最先进的印刷电路板制作技术和最新型的电晶体元件,具有维护方便的特点。数字式自动电压调节器(AVR)模块为PEC800型多功能功率控制器,它不仅控制功率整流器的电压输出,而且包含有限制器、监视功能及供货范围内的其它控制电子。受控的可控硅整流器直流输出通过灭磁设备接入发电机磁场(转子)。安装时共有六面柜子,1个励磁调节器柜,1个灭磁柜,3个整流柜,1个交流进线柜,并配备有结构完善的标准软件,包含AVR/SES安全运行所需的全部调节、保护、和监视。安装完毕后由省电院全程负责调试,并且其静态调试实验,和动态调试实验都合格。2.从动作原理分析

一开始并没想到是励磁设备自身故障,后联系ABB厂家共同分析,判断为转子过电压保护误动。根据其转子过电压保护动作原理及动作原因分析得到如下结果:

(1)首先,由于发电机机端电压降低至某个值时,也就是发电机电压明显低于给定电压时,励磁系统强励动作,使励磁电流增至最大值,从而使励磁机端电压升到顶值,当发电机恢复至低电压继电器返回值时,励磁整套装置返回,励磁电压恢复正常。据此判断,发电机转子过电压不应该误动。怀疑有外部或者原件损坏对结果造成了影响,后检查励磁设备外观及内部相关原件,如霍尔变送器,二次接线等无发现明显的损坏。

(2)没发现明显问题后,尝试起机,启动过程中监视励磁系统各个参数,发现当#1机负荷在260MW时,励磁电流 1875A,Crowbar回路经过霍尔变送器的输出值P10929为-163A,另测量#2机负荷235MW时,P10929的测量值为-114A。从厂家处得知此值的理论值为0A。当发电机满负荷运行时,P10929的输出值达到了197A,根据ABB励磁设备的转子过电压保护原理:当调节器检测到 P10929霍尔元件的输出值大于导通电流P925的设定值200A,持续20ms以上,则转子过电压保护动作。由此判断,在满负荷状况下,励磁电流稍微增大便使P10929的输出值即将达到了保护动作值,又因为由于该电流检测利用霍尔元件实现,输出电压为mV级,在受到一定电磁干扰时,元件输出会有较大波动,致使强励动作时,P10929输出值大于设定值,诱发转子过压保护动作。

三、问题处理

再次检查现场设备状况及励磁小室周围的布置情况,在励磁系统功率柜旁边有发电机出现PT柜,其它没发现明显的电磁干扰源。尝试更快霍尔变送器,更换后发现问题依旧存在;再次观察励磁柜内设备,怀疑母排的布置不对称,其中一根母排有拐角和另一个母排没有平行,这样在电流很大时有可能造成不对称磁场而影响霍尔元件,导致变送器计算有误差。但是现场的母线和PT出线柜的布置都无法变动,故只能调整Crowbar回路的电流定值。

根据前面的测量结果观察判断后,发电机的额定励磁电流2655A,强励动作时为额定励磁电流的2倍,故Crowbar回路的电流为2665/1875*2*163=463.3A,考虑一定的裕度,则导通电流P935的定值可以设定为463.3*1.25=579A,取个整值为600A。

关键字:电磁干扰 编辑:探路者 引用地址:电磁干扰造成励磁系统保护误动的分析与处理

上一篇:电磁兼容/电磁干扰的设计技巧和实战设计问答
下一篇:告诉你家用电器的电磁辐射真的那么高吗

推荐阅读最新更新时间:2023-10-12 22:30

从实用电路入手,解读实现复杂电子系统低电磁干扰的几种应用场景
对于汽车、通信以及测试与测量设备等广大系统制造商来说,技术的发展带来了终端功能与性能的大幅提升,其根源在于系统中配备的功能愈加丰富的电子模块。然而功能越丰富,电路就越复杂,不论是新款汽车中装载的中控集成式多媒体系统、高性能音响系统,还是体积越来越小的 5G 通信设备(手机及基站),抑或是要求精度越来越高的仪器仪表,对于高精度数字和 模拟 IC 的要求都愈发严苛,特别是在供电需求方面。 作为任何电子系统设计不可或缺的部分,电源性能的高低对于系统性能的高低有着至关重要的影响。而电磁干扰( EMI )特性则是其中最关键的性能之一。这种干扰通过电磁感应、静电耦合或传导来影响电路,对于电源性能的任何要求(功率密度增加、开关频率更高以及电流
[汽车电子]
从实用电路入手,解读实现复杂电子系统低<font color='red'>电磁干扰</font>的几种应用场景
示波器可用于电磁干扰(EMI)排查?真的吗?
随着能够提供强大FFT分析和具有杰出噪声性能的高性能示波器的出现,排查EMI问题有了新的工具。根据一致性测试结果,示波器被证明是快速理解有害辐射和识别其来源的有价值工具。在同一台仪器内既可以观察时域波形又可以分析频谱为快速分析有害辐射创造了条件。由于示波器是设计工程师在工作台上最常用的仪器,示波器有助于在研发阶段排查EMI问题,并允许在去电磁兼容(EMC)实验室前先做测试,从而显著提高一致性测试成功的可能性。 这是一系列讨论示波器EMI测试用例文章中的第一篇,在这里高性能示波器展现出其强大FFT功能,突破了传统示波器产品的局限性。 新的数字示波器,如在这个用例分析中所使用的罗德与施瓦茨公司的RTO,将EMI排
[测试测量]
示波器可用于<font color='red'>电磁干扰</font>(EMI)排查?真的吗?
列车运行过程中电磁干扰影响地铁信号系统
电力牵引对轨道电路传输系统的干扰,不是供电系统,主要是列车运行期间,由于电源波动、整流件换向、大负载变化、列车起动或制动、供电臂切换、车辆逆变 等的影响。列车在钢轨上运行时,是否会产生大量对信号传输系统的电磁干扰信号,从而引起轨道电路“红光带”,甚至造成道岔区段“绝缘节”烧毁的故障,是信号界关注的问题,也是现场维护所关心的。本文通过现场测试,对在列车运行过程中产生的电磁干扰信号是否会影响信号系统的轨道电路、车上信号、车地通信(TWC)等进行分析。 1 列车运行过程与牵引电压电流变化关系 通过动态在线监测,全线仅一列试验车运行时, 牵引电压、电流随列车运行状态而有明显变化。实际监测数据表明,1500V“直流”与理想24脉
[工业控制]
列车运行过程中<font color='red'>电磁干扰</font>影响地铁信号系统
Molex可定制包装电磁干扰吸收带和吸收薄板
Molex 可定制包装HOZOX™ 电磁干扰(EMI)吸收带和吸收薄板提供出色的噪声抑制 吸收宽带辐射噪声的解决方案提高产品性能并满足电磁兼容性(EMC)法规要求 全球领先的电子元器件企业Molex公司推出创新的HOZOX™ 电磁干扰 (EMI) 吸收带和吸收薄板,适用于多个行业的高频率设备制造商,包括医疗、消费电子、数据/电信和微波/射频。HOZOX吸收技术利用独特的双层设计,以期最大限度地提高EMI噪声抑制性能。磁层的复合粉末可以吸收较低频率电磁能量,同时导电层的粉末和高损耗介电树脂则吸收高频率电磁能量。这些产品具有极薄的外形尺寸,并且提供两种不同的吸收带格式,以及A4薄板格式,所有产品可以按照特定的配置规范方便地
[模拟电子]
扩谱调制模式使D类放大器的电磁干扰降至最低
摘要:本文对脉宽调制(PWM)和扩谱调制两种不同的D类(转换模式)放大器技术进行了探讨。从传统意义上来讲,PWM型D类放大器需要庞大且昂贵的滤波元件来降低由其满摆幅转换和快速开关频率所引起的电磁干扰(EMI)。而当今的D类放大器采用的扩谱调制技术则允许设计者省去这些滤波元件,又不会降低音频性能或放大功效。 引言 由于功效高于AB类放大器,D类放大器对便携式音频应用设计人员来说更具吸引力。但是,也有一些设计者并未在便携式应用中使用D类放大器,因为传统的PWM型D类放大器需要庞大且昂贵的滤波元件来降低电磁干扰。Maxim公司的D类放大器扩谱调制技术则让设计者可以省去
[模拟电子]
鼎炫控股重庆抗电磁干扰材料新厂正式启用
EMI材料厂商鼎炫控股为扩大接单能力、提升市场占有率,2016年在重庆斥资8300万新台币自建生产基地正式落成启用。鼎炫控股表示,重庆川扬新厂占地约4000余坪,厂房面积计约2600坪,新厂启用后将扩增模切加工产线并添购设备提升生产自动化,产能可望较旧有厂区增加3成以上,生产质量与效率也可望大幅提升。 鼎炫控股看好重庆为全球科技大厂主要生产重镇,在重庆川扬盖新厂除了可就近服务既有客户,亦将持续开发新客户,提供材料事业持续稳健成长的动能。 鼎炫控股旗下材料事业布局电磁干扰(EMI)材料近20年,为全球少数能自主研发上游材料、持续优化可规模量产的模切工艺,并提供高度客制化需求的一条龙整合专业材料厂。 目前鼎炫控股EMI材料销售约8成聚
[手机便携]
电网谐波的产生及其检测方法分析
  0 引 言   随着现代电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通等各种领域得到广泛应用,但由于电力电子装置是一种非线性时变拓扑负荷,其产生的谐波和无功注入电网,会使设备容量和线路损耗增加,造成发配电设备利用率的下降,影响供电质量,对电力系统的安全稳定运行构成潜在威胁。目前,谐波污染、 电磁干扰 和功率因子降低已成为电力系统的三大公害,因此,研究和分析谐波产生的原因,为抑制电力系统的谐波干扰提供好的检测方法,对提高电网运行质量满足用户需求具有重要的实际意义。   1 谐波产生的原因   在电力系统中,电压和电流波形理论上应是工频下的正弦波,但实际的波形总有不同的非正弦畸变
[测试测量]
运算放大器在强电磁干扰下会出现什么变化?
一、为什么要讨论运算放大器的电磁干扰抑制性能 集成运算放大器对于输入信号差分放大工作性能会受到很多因素的影响。包括工作电压、环境温度、输入的共模信号、偏置电压、电流的变化等等。其中有一类干扰往往开始不会受到重视,那就是对环境中的电磁干扰(EMI:Electromagnetic Interference)。 在现代集成运算放大器工作环境中,周围的强的、高频的电磁干扰源逐步增多,包括有板上的开关电源、周围的无线通信模块等,响应的干扰电磁波频域会从10MHz一直扩展到6GHz。 在前几天有同学在留言中写到自己的一个经历,曾经在自行搭建的基于LM386音频功放电路调试过程中,有功放里传出了当地调频电台的声音。这说明所设计的电路对于
[测试测量]
运算放大器在强<font color='red'>电磁干扰</font>下会出现什么变化?
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved