正弦波UPS中逆变电路结构及SPWM方法

最新更新时间:2013-11-30来源: 电源网关键字:正弦波  UPS  逆变电路 手机看文章 扫描二维码
随时随地手机看文章

前言

逆变电路是UPS电源的核心电路。作者在剖析若干知名厂家生产的UPS电源电路的基础上,对UPS电源中的逆变电路进行了探讨。本文所涉及的电路,是这些厂家技术人员多年技术经验的结晶,并且经历过大量产品投放市场后的考验,具有很好的参考价值。作者在此发表出来,供业内人士和有兴趣者参考。

UPS电源有很多分类,作者根据业内的习惯,将UPS电源分为工频机和高频机。本文中的工频机和高频机采用的都是正弦波逆变电路,输出的都是正弦波电压,并且都是在线式结构。文中只涉及正弦波逆变电路,以下简称逆变电路。

逆变电路的结构

逆变电路由正弦波SPWM调制电路和功放电路组成。

1 工频机所采用的逆变电路的结构图

图1所示为工频机所采用的逆变电路的结构图。由图可见,工频机逆变电路中右侧的功放电路采用的是全桥式功放电路,这种功放电路需要正弦波调制电路提供4路相互独立的SPWM驱动信号。在左侧的正弦波调制电路中,用正弦波信号去调制三角波信号,得到4路独立的SPWM信号,经隔离驱动后送至功放电路。

在这种结构中,每一桥臂功率管的数量视输出功率而定,当输出功率较小时,功率管采用MOS器件,输出功率大时,采用IGBT模块。

2 高频机所采用的逆变电路的结构图

图2所示为高频机所采用的逆变电路的结构图。由图可见,高频机逆变电路中的功放电路采用的是半桥式功放电路,这种功放电路需要正弦波调制电路提供2路相互独立的SPWM驱动信号。在左侧的正弦波调制电路中,由电脑板直接提供2路SPWM波信号,经隔离驱动后送至功放电路。

在这种结构中,每一桥臂功率管的数量也视输出功率而定,当输出功率较小时,功率管采用MOS器件,输出功率较大时,也采用IGBT模块。正弦脉宽调制(SPWM)方法

SPWM信号实际上就是与正弦波等效的一系列等幅不等宽的矩形脉冲波。

在20KVA以下的小型逆变电路中,通常用正弦波(调制波)调制三角波(载波)的方法来实现脉宽调制的目的,又称为三角波调制法,它是利用比较器来完成这一功能的。根据调制信号所包含的信息量,调制电路可以分为单极性调制和双极性调制。

1 SPWM调制方法及特点

在单电源供电的比较器重,若将正弦波送到比较器的同相输入端,将三角波送到比较器的反相输入端,则在正三角波幅值大于正弦波的幅值时,比较器将输出一个负向脉冲,这个负向脉冲的宽度等于三角波大于正弦波部分所对应的时间间隔。而在三角波幅值小于正弦波的幅值时,比较器将输出一个正向脉冲,这个正向脉冲的宽度等于三角波小于正弦波部分所对应的时间间隔。从图3可见,这时在电压比较器的输出端将得到一连串脉冲方波序列,其特点是:对应于正弦波幅值较低的部位,脉冲方波的宽度较窄,而对应于正弦波幅值较高的部位,脉冲方波的宽度较宽。这就是正弦脉冲调制信号,即SPWM信号。

根据分析,这种三角波调制电路有以下特点:

⒈当三角波频率与正弦波频率之比N>20以上时,在比较器输出端产生的矩形脉冲,其宽度正比于正弦波幅值与三角波幅值之比。

因此,只要适当地调节输入到比较器的正弦波电压的幅值大小,就可以调节脉冲宽度,从而调节了逆变输出的正弦波电压的大小。这一特点也使得由三角波调制电路构成的逆变电路具有自动稳压的功能。

⒉当正弦波幅度小于三角波幅度时,逆变器输出电压波形中只含有基波和17、19…次谐波,而不包含3、5、7…等低次谐波分量,仅存在与三角波频率相近的高次谐波。

正弦波的频率是50Hz,通常三角波的频率是10-20KHz左右。因此,在采用三角波调制法的逆变电路中,输出电压的波形中实际上不包含低次谐波分量,它们所包含的最低谐波分量的频率都在几十KHz以上。因此,在这种逆变电路中,逆变器所需的合成器(即输出滤波器)的尺寸、重量和成本可以大大减小。

⒊若增大正弦波的幅度,使正弦波幅度大于三角波幅度时,逆变电路输出的调制波中,将开始出现3、5、7…等低次谐波分量。这会导致逆变输出正弦波电压的失真度增大,严重时会使电路进入自动保护关机状态。因此在调试时要主意正弦波的幅度不能超过三角波的幅度。

上述正弦波调制法已经成为一种经典的正弦波调制方法,在逆变电路中被广泛使用。

2 双极性SPWM调制

在双极性调制电路中,需要一路正弦波信号和一路三角波信号,三角波信号的幅值必须略大于正弦波信号的峰-峰值。

如图4a所示,若将正弦波送到单电源比较器的同相输入端,将三角波送到比较器的反相输入端,则在电压比较器的输出端将得到一连串脉冲方波序列,其特点是:在正弦波的正半周中,对应于正弦波幅值较低的部位,脉冲方波的宽度较窄,而对应于正弦波幅值较高的部位,脉冲方波的宽度较宽。而在正弦波的负半周中,对应于正弦波幅值较低的部位,脉冲方波的宽度较宽,而对应于正弦波幅值较高的部位,脉冲方波的宽度较窄。

由于这种调制电路输出的SPWM波信号中既包含了正弦信号正半周的信息,又包含了负半周的信息,所以称为双极性调制。

由于高频机通常采用半桥式功放电路,需要两路大小相等、相位相反的SPWM信号,因此在高频机中,将由此得到的双极性调制信号分为两路,将其中一路反相180°,即可得到两路大小相同、相位相反的SPWM信号。

图4b所示为另一种调制电路。它与图4a的区别是将正弦波送到比较器的反相输入端,而将三角波送到比较器的同相输入端。由此得到的SPWM信号的波形与图4a的相反,SPWM波宽度的变化规律也相反。将其分为两路,并将其中一路反相后,同样可以得到两路大小相等、相位相反的SPWM信号。

3 单极性SPWM调制

在单极性调制电路中,也需要一路正弦波信号和一路三角波信号,但三角波信号的幅值只须略大于正弦波信号正半周的幅值或负半周的幅值。并且与正弦波的正半周或负半周对齐。

如图5单极性调制电路示意图所示,若将正弦波送到单电源比较器的同相输入端,将三角波送到比较器的反相输入端,则在三角波幅值大于正弦波的幅值时,比较器将输出一个负向脉冲,这个正向脉冲的宽度等于三角波大于正弦波部分所对应的时间间隔。而在三角波幅值小于正弦波的幅值时,比较器将输出一个正向脉冲,这个正向脉冲的宽度等于三角波小于正弦波部分所对应的时间间隔。从图5可见:这时在电压比较器的输出端将得到一串脉冲方波序列,其特点是对应于正弦波正半周幅值较低的部位,脉冲方波的宽度较窄,而对应于正弦波正半周幅值较高的部位,脉冲方波的宽度较宽。对应于正弦波的负半周,则输出脉冲方波的幅值为0。

由于这种调制电路输出的SPWM波信号中只包含了正弦信号正半周或负半周的信息,所以称为单极性调制。

在工频机中通常采用全桥式功放电路,需要4路不同的SPWM驱动信号,因此必须采用单极性调制方式。所以在工频机中,需要提供一路正弦波信号,一路正向三角波、一路反向三角波。其中正弦波信号的对称轴不能在0轴(X轴)上,而是要抬高到电源电压的二分之一处,图中标记为Vz,这样才能保证三角波只与正弦波的正半周或只与负半周相调制。于是,用正向三角波和正弦波信号组合,可以得到两路SPWM信号,而用反向三角波和正弦波信号组合,可以得到另外两路不同的SPWM信号,一共可得到4路不同的SPWM信号。参见图6所示。

图6中正弦波与正、反向三角波组合排列的位置与全桥功放电路中功放管的排列位置相对应,它们输出的驱动信号能使功率管按照对角线的规律导通和截止。

在正弦波正半周期间,a组中正弦波总是高于反向三角波的幅度,加至单电源比较起的反相端以后,比较器a始终输出低电平,使左上臂功放管始终截止;此时虽然d组中的比较器d可以输出SPWM信号,但左上臂与右下臂对角线上的两组功放管却不能导通。此时b组中正弦波总是高于反向三角波的幅度,所以比较器b始终输出高电平,使左下臂功放管始终饱和导通;而此时c组中的比较器c却可以输出SPWM信号,所以右上臂与左下臂对角线上的功放管就能根据SPWM信号导通或截止。在正弦波信号正半周期间,左上臂功放管始终截止,所以全桥功放电路左侧上、下臂的功放管不会同时导通;而右侧上、下功放管的驱动信号的极性刚好相反,因此右侧上、下臂的功放管也不会同时导通。

正弦波负半周期间,c组中正弦波总是低于正向三角波的幅度,加至单电源比较起的反相端以后,比较器c始终输出低电平,使右上臂功放管始终截止,此时虽然b组中的比较器b可以输出SPWM信号,但右上臂与左下臂对角线上的两组功放管却不能导通。此时d组中正弦波总是低于正向三角波的幅度,所以比较器d始终输出高电平,使右下臂功放管始终饱和导通;而此时a组中的比较器a却可以输出SPWM信号,所以左上臂与右下臂对角线上的功放管就能根据SPWM信号导通或截止。在正弦波信号负半周期间,右上臂功放管始终截止,所以全桥功放电路右侧上、下臂的功放管不会同时导通;而左侧上、下功放管的驱动信号的极性刚好相反,因此左侧上、下臂的功放管也不会同时导通。

因此,上述组合正好符合全桥功放电路的要求。

需要说明的是,所谓正、反向三角波只是相对概念,它们相互平等,无主次之分,这样的名称只是便于说明问题。

关键字:正弦波  UPS  逆变电路 编辑:探路者 引用地址:正弦波UPS中逆变电路结构及SPWM方法

上一篇:一款基于EG8010的专门用于工频逆变器的驱动器
下一篇:工程师技术精华集之逆变器的另类制作方法

推荐阅读最新更新时间:2023-10-12 22:30

智能网络UPS电源监控技术的研究
  UPS(UninterruptiblePowerSystem)即不间断电源,是一种以逆变器为主要元件、稳压稳频输出的计算机电源保护设备。UPS是伴随着计算机的诞生而出现的。特别是微型计算机的飞速发展,客观上促进了UPS电源的发展 。UPS的基本功能就是停电时能够接替市电持续地供应电力,由于电子元器件反应速度快,停电的瞬间在4-8ms内继续供应电力,解决现有电力的断电、低电压、高电压、突波、杂讯等现象,使我们的计算机系统和网络运行更加稳定安全。   随着计算机技术的发展,计算机及其网络对相应的电力保障提出了更高的要求,在这样的前提下,智能网络UPS电源应运而生。智能网络UPS电源系统,主要是以网络为管理对象,在UPS主机
[电源管理]
智能网络<font color='red'>UPS</font>电源监控技术的研究
带非正弦波电流的新颖数字式功率因数校正技术
摘要:数字式功率因数校正(PFC)技术利用标准的微控制器履行PFC控制和调节,允许从电网产生的非正弦电流波形合成,使其幅值适应特定的需要,电流谐波含量在标准确定的限制之内,总体功率因数非常接近于1。像快速电流环路、电压调整、安全功能这样的其它特征也可以被履行。关键词:非正弦波电流;数字式功率因数校正;微控制器 1引言 迄今为止,基于功率因数校正(PFC)控制器IC的有源PFC(升压)预调节器,不论是工作于不连续导电模式(DCM),还是工作于连续导电模式(CCM),其控制和调节的结果,都是在系统AC电压输入端产生与AC输入电压同相位的正弦波电流,使线路功率因数(PF)趋于1。 一种基于标准微控制器(如ST9)和UC
[电源管理]
带非<font color='red'>正弦波</font>电流的新颖数字式功率因数校正技术
模块化UPS存在的问题详细研究
1 模块化 UPS 在客户中认可度不高 直流电源并联很简单,电压幅值相同、极性相同即可,因电流本身单向,均流技术也比较容易。即使均流特性不好,还有每个模块的限流起作用,不存在环流问题。 而交流电源的并联将困难得多。2路或者多路交流电源的并联存在同幅值、同频率、同相位、同波形等多个参数,电流本身的双向造成均流将变得非常复杂。理论上计算,模块化UPS的可用性高出普通传统UPS的数倍甚至数十倍。但是从模块化UPS上市至今有近10年的历史,实际使用效果各个品牌参差不齐,据调研,确实有一些品牌的模块化UPS的故障率较高。对于来自进口的模块化UPS,可能缺乏自主知识产权,用户担心以后维护。因而目前模块化UPS在客户特别高端客户的认
[电源管理]
台达UPS在抚顺广电前端机房的成功案例简述
项目背景: 前端机房是广播电视系统的心脏,是各路电视信号的处理、分配传输的集散地。抚顺前端机房现向网络用户传送广播电视节目,24小时不间断播出,机房供电质量的优劣直接影响着系统的安全运行和对用户的服务质量,前端机房要有稳定而不间断的电源才能保证安全优质播出。所以保证前端机房的供电不间断是十分重要的。 项目需求:   由于抚顺广电业务持续增涨再加上世界杯的来临,为了保障前端机房的正常运行,给用户提供更流畅的数据传输,使广大球迷能够更好的观看世界杯,从而提高收视率。针对这种情况,抚顺广电决定投入一定的经费,购置UPS不间断电源用于前端播出机房,保证优质、安全、不间断播出。期间,由于新增20KVA负载
[电源管理]
台达<font color='red'>UPS</font>在抚顺广电前端机房的成功案例简述
UPS的供电方式与容量选择
(1)UPS 的供电方式 UPS 的供电方式分为集中供电方式和分散供电方式两种: 集中供电方式是指由一台UPS(或并机)向整个线路中各个负载装置 集中供电 ; 分散供电方式是指用多台 UPS 对多路负载装置分散供电。 这两种供电方式有各自的优缺点,如表1所示 表1 UPS不同供电方式的优缺点比较 集中供电方式 便于管理 布线要求高 可靠性低 成本高 分散供电方式 不便管理
[电源管理]
新一代UPS的发展趋势
全数字化的UPS 功率MOSFET以及IGBT的问世为UPS开拓出一条光辉灿烂之路,使UPS技术步入崭新的时代——全数字化时代。 首先,UPS的输入部分取消了用于与市电隔离的工频变压器或为降压用的自耦变压器,而采用SPWM技术实现整流高频化(AC/DC)。一方面减少直流侧滤波器尺寸,改善直流侧调节性能,提高市电电压允许变化范围;另一方面在控制技术中采用数字信号处理器DSP控制,使输入电流正弦化,并与市电电压相同,从而实现UPS高输入功率因数(PF约为1),消除对市电的谐波“污染”,大幅度减少无功损耗,明显降低了运行成本,达到环保的目的。 其次,取消了UPS逆变器中的工频变压器,用高频变压器来实现UPS与市电的隔离
[电源管理]
如何用泰克示波器测量超低频波形
在我们日常的调试电路板和 测量 的过程中,初始化 示波器 时,往往我们“偷了一下懒”,按一下示波器上的“自动设置”按钮即可。 但是,你们有没有遇到过测量超低频波形的时候呢?比如: 2Hz 以下,甚至 1Hz 以下?这个时候,那个“自动设置”就不起作用了。下面就以实例说明如何测量超低频波形的方法: 下面我们测量一个频率为 0.7Hz , Vpp 是 3.5 的正弦波(假设我们开始不知道它是什么波形,需要测量去发现)。 当我们按下示波器“自动设置”的时候发生什么后果?让我们看看它的波形: 这是啥波形啊?不就是没有波形吗?呵呵,别着急,别让示波器的假像迷惑了。这个时候频率太低
[测试测量]
如何用泰克示波器测量超低频波形
UPS绿色环保 卖点还是炒作
对于UPS行业而言,“绿色环保”并非一个新话题。事实上,早在多年前,数据中心电力不足和电费高昂等就已成为全球化的焦点问题。Gartner提供的有关数据表明,到2008年年底,全球将有近一半的数据中心无法拥有足够的能源和冷却装置用以支持高密度的服务器和存储设备;到 2011 年,数据中心三分之一以上的预算将是环境成本。IDC和Gartner的预测报告中同样提到:到2010年,企业每年在电力上的花费将大于当初在硬件设备上的投资额。 如果将“绿色环保”分拆为两个概念,我们也可以从“环保”和“节能”两个角度来看待这个词语。除了在产品中尽量避免使用或不使用铅、汞等有害物质之外,UPS行业的“绿色环保”还需要从UPS产品自身能耗、整体I
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved