变压器局部放电超声定位中的自适应优化算法

最新更新时间:2013-12-17来源: 电源网关键字:变压器  超声定位 手机看文章 扫描二维码
随时随地手机看文章

过程中,当内部绝缘的某些薄弱部位在高场强作用下发生局部放电时,有超声波能量放出,球形超声波在不同介质中向外传播,处于变压器外围不同点的传感器能接收到超声信号,通过GPRS网络传输给后台,后台测量超声信号传播的时延,联立求解定位方程组便可得到局部放电点的位置。

1 变压器局部放电超声定位数学模型

设电力变压器中局部放电点为S(x,y,z),x,y,z均为未知量;共有8个传感器贴装于变压器表面接收超声信号,见图1。

他们的坐标为Ri(xi,yi,zi),其中i=1,2,…,8;当传感器接收到超声信号后,传回后台程序,根据相关函数法计算其中某路超声信号和其余信号的时间差,用△ti1=ti-t1表示第i(i=2,3,…,8)个接收端与第1个接收端之间的时延,见图2;υ表示超声波传播速度,由于变压器内部结构复杂,超声传播速度为未知量。

1.1 模型建立

理想情况下,8个传感器均能接收到超声信号并能计算时延,则局放定位算法的方程组为:

实际上,由于超声波在传播过程中的绕射、透射、反射以及衰减等,通常能接收到信号的接收端少于8个,不妨设实际采集过程中,有m+1个接收端接收到信号。则有m个非线性定位方程:

1.2 无约束优化

定位方程组有4个未知量(x,y,z,υ),当4

2 算法描述

求解无约束优化问题有很多经典算法,最速下降法结构简单、计算量小、具有全局收敛性,但在极值点附近容易出现振荡(正交)现象;牛顿法收敛速度快,但不是全局收敛。为此,提出一种具有自适应功能的算法,在变压器局部放电定位问题中,与单纯的牛顿法和最速下降法比较,该算法显示了其优越性。

2.1 算法步骤

(1) 给定初始点X0∈R4,精度ε<10-6,k=0;

(2) 计算▽F(Xk),检验是否满足收敛性的判别准则:‖▽F(Xk)‖≤ε,若满足,则停止迭代,得点X*≈Xk即为极值点;否则进行(3);

(3) 令Sk=-▽F(Xk),从Xk出发,沿Sk进行一维搜索,即求λk,使得:

(4) 令Xk+1=Xk+λkSk,k=k+1;

(5) 判断第k+1次与第k次的梯度向量是否正交或接近正交,即判断是否满足正交条件:│▽F(Xk)?▽F(Xk+1)│≤0.1,若没有正交(即振荡现象),则进行(2);否则进行(6);

(6) 进行牛顿迭代,计算▽F(Xk),若‖▽F(Xk)‖≤ε则停,输出Xk;否则,进行(7);

(7) 计算Sk=-[▽2F(Xk)]-1*gk;

(8) 一维搜索:min F(Xk+λSk) = F(Xk+λkSk),令Xk+1 = Xk+λkSk,k=k+1,进行(6)。

2.2 体元分割法选取初始点

算法中,开始迭代前要对未知向量取合适的初始点,初始点的选取往往关系到算法的成败.但将本算法集成到系统软件中时,需要自动选择高效率的初始点。考虑这样一种方法,将变压器分割成大小相同的体积元,体积元的个数可以是几十个甚至几百个,以每个体元的几何中心作为初始点依次进行迭代,迭代结束后.再根据所有体元的迭代结果进行比较,判断出整个变压器中的最优点。

2.3 算法分析

本算法将最速下降法和牛顿法相结合,根据体元分割选取初始点,迭代开始后。借助最速下降法全局收敛的特性,在梯度向量出现振荡现象之前完成了初步寻优过程,然后采用牛顿法进行精确寻优,牛顿法收敛速度快,在10步之内,迭代结果即可满足精度要求。3 组合算法在电力变压器局部放电点定位中的应用

在山西运城供电公司的变压器局部放电在线检测项目中,应用了该算法,以下为现场检测情况。

现场一检测情况:

变压器规则(长×宽×高):1.2 m×0.8 m×1.0 m;

实际放电点坐标:S(0.5,0.4,0.4);

传感器坐标:R1(0.6,0.0,0.5),R2(0.0,0.4,0.5),R3(0.6,0.4,1.0),R4(1.2,0.4,0.5),R5(0.6,0.8,0.5);

参考点时刻:t1=0.000 303 05 s;

接收时延:d1=[0.000 364 22;0.000 434 48;0.000 505 08;0.000 128 6]一t1。

体元个数:5×5×5。

现场二检测情况:

变压器规则(长×宽×高):5 m× 3 m×4 m;

实际放电点坐标:S(4.5,2.6,3.7);

接收端坐标:R1(2.5,0.0,2.0),R2(2.5,1.5,4.0),R3(5.0,1.5,2.O),R4(2.5,3.0,2.0),R5(0,1.5,2.0);

参考点时刻:t1=0.002 6 S;

接收时延:d1=[0.001 6;0.001 5;0.001 9;0.003 524 69]一t1。

体元个数:5×5×5。

4 结 语

现场检测体现了混合算法的优越性,主要有:

(1) 组合算法具有最速下降法全局收敛的优点;

(2) 组合算法具有牛顿法收敛速度快的优点;

(3) 初始点采用自动分割,自动判别,能保证全局最优;

(4) 精度随数据的不同变化为10 cm,完全满足放电定位的精度要求。

关键字:变压器  超声定位 编辑:探路者 引用地址:变压器局部放电超声定位中的自适应优化算法

上一篇:开关电源中高频变压器绕制心得
下一篇:加装隔离变压器有才华 能有效降低UPS零地电压

推荐阅读最新更新时间:2023-10-12 22:32

高频电子试验变压器路在何方
高频电子试验变压器的发展方向,高频电子试验变压器的最大特点就是高频化。从变压器的工作原理来看,提高工作频率,可以减少变压器。高频电子试验变压器的发展方向,高频电子试验变压器的最大特点就是高频化。从变压器的工作原理来看,提高工作频率,可以减少变压器的体积和重量,也就是实现短小轻薄化,从而提高单位体积(或重量)传输功率,也就是高功率密度化。这些都是高频电子变压器本身固有的特点和直接带来的结果,而不能简单地把高频化、短小轻薄化、高功率密度化,作为高频电子变压器的发展方向。下面从高频电子变压器的整体结构、磁芯材料和结构、线圈材料和结构几个方面,提出一些发展方向的意见。 1整体结构 为适应电子设备愈来愈轻薄短小,高频电子变压器一个主
[工业控制]
如何提高变压器变比测试工作效率
变压比测试试验是电力 变压器 交接试验中的一个必做项目,其目的想必许多电力工程师都已经知道了,我们在进行变压比测试时最简答的方法是利用 变压器 变比测试仪进行测量。对变压器变比的测试,方法很多,那么哪一种方法是最有效的呢?如何提高变压器变比测试工作效率呢? 在做变比测试试验时,我们常用单相双电压表法。变压器变压比测试的单相法,是根据三相变压器的不同连接组别,将200V单相电压依次施加在高压侧的两个端子上,同时测量低压侧对应端子上的电压,然后计算出变压比。 在变比测试工作中,我发现使用这种方法不但试验接线较麻烦、操作程序繁琐,工作效率低(工作速度慢、操作人员多),所以有必要对这种测试方法进行改进。经过分析,如果不考虑试验数据的分析处
[测试测量]
用隔离变压器降低UPS输出零地电压
摘要:介绍了用隔离变压器降低UPS零地电压的方法,解决了UPS上电开机前零地电压低,而开机后零地电压升高的现象。 关键词:不间断电源;隔离变压器;零地电压 用户安装的某些负载(例如HP小型机、IBM服务器等),会对UPS输出零地电压有较高的要求,一般情况下要求 2)UPS是开关电源,其输入和输出端都加装了EMI抑制电路,由于电感和电容的存在,会造?输出零线与输入零线之间存在电压差,因而造成了输出零线与地线之间的电压差。 为有效地降低输出的零地电压,保证负载可以正常上电开机,通常的做法是采用加装隔离变压器的办法,来隔离输入和输出之间的电气连接,在变压器副边零地短接,从而达到降低零地电压的目的。对于中小功率的UPS,一般
[应用]
小科普:电源模块源知识——漏感
什么是漏感 漏感是电机初次级在耦合的过程中漏掉的那一部份磁通。变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。 漏感在哪?虽然印制电路板上的印制导线以及变压器的引线端也是漏感的一部分,但大部分漏感在变压器原边侧绕组中,尤其是那些与副边侧绕组有耦合关系的原边侧绕组中。 漏感是因为变压器一组线圈到另一组磁通量不完全耦合而产生的电感分量。任何初级线圈到次级线圈磁通量没有耦合的部分会表现出一个与初级串联的感性阻抗,因此在原理图中,漏感表示为在理想变压器初级线圈前端一个而外的电感。 在特定应用中,如开关电源和照明整流器,变压器的漏感在产品设计中会产生重要的功能影响。因此,准确的漏感测量
[电源管理]
小科普:电源模块源知识——漏感
高频电源变压器磁芯的设计原理
   1 引言   电子信息产业的迅速发展,对高频开关式电源不断提出新的要求。据报导,全球开关电源市场规模已超过100亿美元。通信、计算机和消费电子产品是开关电源的三大主力市场。庞大的开关电源市场主要由AC/DC和DC/DC开关电源两部分组成。据预测,AC/DC开关电源全球销售收入将从1999年的91亿美元增加到2004年的122亿美元,年平均增长率为5.9%。低功率(0~300W)的AC/DC将面向增长平稳的消费电子产品和计算机市场;大功率(750~1500W)的AC/DC电源将面向增长强劲的电信市场。DC/DC电源约占整个开关电源市场的30%,但计算机与通信技术的快速融合,带动了DC/DC模块式电源的迅速增长。预计今后几年,
[电源管理]
高频电源<font color='red'>变压器</font>磁芯的设计原理
开关电源原理与设计(连载60)开关电源变压器铁芯磁滞回线测量-part2
从原理上来说,只有RC积分电路输出电压的特性与磁场强度取样电路输出电压的特性(速率)基本一致的时候,磁滞回线的显示失真才会最小。那么u1电压的变化特性与u2电压的变化特性是否基本一致呢?为了简单和便于分析,这里我们把输入电压看成是交流脉冲方波,但对于正弦波电压还是同样有效。 如果忽略取样电阻R1两端的电压降u1,则加到变压器两端的电压e1为: e1 ≈L1di1/dt (2-37) 由此可以求得流过变压器初级线圈的励磁电流为: i1 = = +i1(0) ——输入电压为方波 (2-38) (2-38)式中,e1为加到变压器T2初级线圈两端的电压(这里为方波),或T1
[电源管理]
基于小波理论的变压器励磁涌流和短路电流的判定
变压器微机保护的主保护就是差动保护,其中的关键问题是如何区分励磁涌流和短路电流,防止励磁涌流导致的误动作。围绕励磁涌流的识别问题 ,涌现出了许多种方法 ,如间断角原理、二次谐波制动原理、电压制动原理、磁通特性原理和等值电流原理及波形对称原理等 ,各种判别方法各有利弊 ,应用最广泛的是间断角原理和二次谐波制动原理。尽管励磁涌流的识别方法很多 ,但都有不足之处。本文讲述了小波理论在励磁涌流识别中的应用。 小波理论分析 小波分析虽然是一种先进的数学理论 ,但它跟博里叶变换一样,也仅仅是一种信号处理工具 ,在励磁涌流识别中的应用也只是作为一种工具 ,还是利用了励磁涌流的基本特点。 图1 非对称性涌流的饱和波形及其小
[电源管理]
e络盟社区与Bourns联合发起反激式变压器实验设计挑战赛
中国上海,2023年9月25日—— 安富利旗下全球电子元器件产品与解决方案分销商e络盟与美国柏恩(Bourns)联合发起反激式变压器实验设计挑战赛。 这项创新竞赛邀请设计工程师和电子爱好者共同探索反激式变压器、开关电源中使用的必备元器件、转换器及逆变器等的潜力。此次竞赛将为参与者提供奖品,旨在激励和奖励其做出的创造性努力。 本次设计挑战赛旨在通过一系列动手实验、测试和设计,来扩大对反激式变压器的理解和应用。它为经验丰富的工程师和充满激情的业余爱好者提供了一个展示技能和创新的平台。 e络盟社区和社交媒体全球主管Dianne Kibbey 表示:“我们邀请工程师和电子爱好者加入这一激动人心的创新之旅,探索反激式变压器
[电源管理]
e络盟社区与Bourns联合发起反激式<font color='red'>变压器</font>实验设计挑战赛
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved