静磁栅位移传感器在电梯控制系统中的应用

最新更新时间:2013-12-19来源: 电源网关键字:静磁栅位移  传感器 手机看文章 扫描二维码
随时随地手机看文章

1 电梯控制简介

电梯是现代建筑内关系到人民生命财产安全的重要交通工具。如何提高电梯的运行效率、降低电梯能耗以及减少机械磨损、延长电梯的使用寿命,都是非常重要的研究课题。电梯是楼层用以固定提升的成套设备,具有安全可靠、乘坐舒适、停层准确、操作简便、运输效率高等特点。它由提升曳引系统、引导系统、安全装置和电控系统组成。

目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;第二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择第二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC可靠性高,程序设计方便灵活。本设计在用三菱 FX2系列PLC控制静磁栅位移传感器实现电梯平层控制。

位移传感器在电梯控制系统中的作用为电梯平层控制的调整,电控系统是电梯的“中枢神经”,其质量的好与坏直接影响电梯质量。客梯和医用梯都讲究乘坐舒适,而舒适感与运行时间有关。要想乘坐舒适,就要延长加、减速时间,因而使运行时间随之延长,电梯运行效率降低。所以,为了使电梯具有较高的运行效率,加减速度应该有一个合适的限度,而且变化要平稳,这就对电控系统提出了如下要求:

安全可靠,排除故障方便,在满足使用要求前提下,线路越简单越好。

噪声和振动小,选择元件要合理,电磁声不能大,安装零件的结构件要有足够刚度,且有防松措施。

能适应频繁起动、停止、调整及换向的工作要求,调速性能好,工作方式易于转换。加、减速和等速要平稳,速度曲线平滑,到站前无微动。

能实现自动平层,且平层必须准确。

能适应在较大范围内变动地提升载荷,能重载起动。

根据电梯运行的特点及以上要求,电梯的运行速度应当符合图1所示曲线。平层误差应符合表1规定。

2 静磁栅位移传感器简介

位移传感器由“静磁栅源”和“静磁栅尺”两部分结合使用。“静磁栅源”使用铝合金压封无源钕铁硼磁栅组成磁栅编码阵列;“静磁栅尺”用内藏嵌入式微处理器系统的特制高强度铝合金管材封装,使用开关型霍尔传感器件组成霍尔编码阵列,铝合金管材外部使用防氧化镀塑处理。“静磁栅源”沿“静磁栅尺”轴线作无接触(相对间隙宽容度和相对姿态宽容度达50mm)相对运动时,由“静磁栅尺”解析出数字化位移信息,直接产生高于毫米数量级的位移量数字信号。充分发掘嵌入式微处理器的资源,将数据更新速度提高到毫秒数量级,以便能适应5m/S以下运动速度的位移响应。

3 产品综合特点

使用寿命长:无接触检测位置及角度,避免了机械损伤,理论上无寿命极限;

抗恶劣环境:-40℃至+100℃工作温度范围,连续高粉尘、泥浆、水下及高撞击、 强振动工作环境;

直接绝对型测量:直接指示位移毫米数或旋转角度数,无需换算,不怕掉电,任意定位控制;

量程极长,分辨率适中:260毫米-2000米长度量程,分辨率0.2mm-1mm;

极丰富的数据接口:4-20mA、1-5V等模拟量输出,各类串并行数据接口以及 PROFIBUS等各种现场总线;

安装维护方便:在保持适度间隙的条件下,无约束安装运行。

4 PLC控制静磁栅位移传感器实现电梯平层控制

要使电梯到达平层区域后能自动平层,必须有一套自动控制系统,即电梯的自动控制装置。该装置的控制部分是静磁栅位移传感器,以30层电梯为例,安装图如下图所示。

上图所示轿厢处于地下层上面的第一层,静磁栅源安装于电梯井道和室外层平行,每层一个,静磁栅尺安装于轿厢上,长度为1.2米,地下层安装两个静磁栅源,用于检测轿厢是否到底位和运动方向。由于电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制,而楼层和轿厢的呼叫是随机的,因此,系统控制采用随机逻辑控制。即在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应状态适时的控制电梯的运行。另外,轿厢的位置是由静磁栅位移传感器确定,并送 PLC的计数器来进行控制。同时,每层楼设置一个静磁栅源用于检测系统的楼层信号。

a. 当电梯定向上行时,静磁栅尺上行方向检测到静磁栅源,抱闸打开,电梯上行。当轿厢碰到上强迫换速开关时,PLC内部锁存继电器得电吸合,定时器Tim10、Tim11开始定时,其定时的时间长短可视端站层距和梯速设定。上强迫换速开关动作后,电梯由快车运行转为慢车运行,正常情况下,上行平层时电梯应停车。如果轿厢未停而继续上行,当Tim10设定值减到零时,其常闭点断开,慢车接触器和上行接触器失电,电梯停止运行。在骄厢碰到上强迫换速开关后,由于某些原因电梯未能转为慢车运行,及快车运行接触器未能释放,当Tim11 设定值减到零时,其常闭点断开,快车运行接触器和上行接触器均失电,电梯停止运行。因此,不管是慢车运行还是快车运行,只要上强迫换速开关发出信号,不论端站其他保护开关是否动作,借助Tim10和Tim11均能使电梯停止运行,从而使电梯端站保护更加可靠。

b. 当电梯需要下行,只要有了选梯指令,下行方向继电器得电其常开点闭合,锁存继电器被复位,Tim10和Tim11均失电,其常闭点闭合为电梯正常下行做好了准备。下端站的保护原理与上端站保护类似不再重复。

c. 楼层计数采用相对计数方式。运行前通过自学习方式,测出相应楼层高度脉冲数,对应30层电梯分别存入30个内存单元DM06~DM21。楼层计数器(CNT46)为一双向计数器,当到达各层的楼层计数点时,根据运行方向进行加1或减1计数。运行中,高速计数器累计值实时与楼层计数点对应的脉冲数进行比较,相等时发出楼层计数信号,上行加1,下行减1。为防止计数器在计数脉冲高电平期间重复计数,采用楼层计数信号上沿触发楼层计数。

d. 当高速计数器值与快速换速点对应的脉冲数相等时,若电梯处于快速运行且本层有选层信号,发快速换速信号。若电梯中速运行或虽快速运行但本层无选层信号,则不发换速信号。

e. 门区信号,当高速计数器CNT47数值在门区所对应脉冲数范围内时,发门区信号。

5 软件设计特点

根据电梯所处的位置和运行方向,在编程中,采用了四个优先级队列,即上行优先级队列、上行次优先级队列、下行优先级队列、下行次优先级队列。其中,上行优先级队列为电梯向上运行时,在电梯所处位置以上楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层静磁栅源存放的寄存器所构成的阵列。上行次优先级队列为电梯向上运行时,在电梯所处位置以下楼层所发出的向上运行的呼叫信号,该呼叫信号所对应的楼层静磁栅源存放的寄存器所构成的队列。控制系统在电梯运行中实时排列的四个优先级陈列,为实现随机逻辑控制提供了基础。

采用先进先出队列,根据电梯的运行方向,将同向的优先级队列中的非零单元(有呼叫时此单元为七零单元,无呼叫时则此单元为零)送入寄存器队列(先进先出队列FIFO),利用先进先出读出指令SFRDP指令,将FIFO第一个单元中的数据送入比较寄存器。

采用随机逻辑控制,当电梯以某一运行方向接近某楼层的减速位置时,判别该楼层是否有同向的呼叫信号(上行呼叫标志寄存器、下行呼叫标志寄存器、有呼叫请求时,相应寄存器为1,否则为0),如有,将相应的寄存器的脉冲数与比较寄存器进行比较,如相同,则在该楼层减速停车:如果不相同,则将该寄存器数据送入比较寄存器,并将原比较寄存器数据保存,执行该楼层的减速停车。该动作完毕后,将被保存的数据重新送入比较寄存器,以实现随机逻辑控制。

6 结束语

采用三菱FX2系列PLC控制静磁栅位移传感器实现电梯平层控制。可实现电梯控制的智能化,电梯运行舒适感好,启动、减速、平层的舒适感不因轿厢负载的变化而变化,取得了令人满意的效果。

关键字:静磁栅位移  传感器 编辑:探路者 引用地址:静磁栅位移传感器在电梯控制系统中的应用

上一篇:1KW纯正弦波逆变电源DC/AC/变压器控制芯片
下一篇:行业人士为你详解逆变器中变压器的绕制

推荐阅读最新更新时间:2023-10-12 22:32

索尼开发在背面照射型CMOS传感器上层叠信号处理芯片的技术
    作为背面照射型CMOS图象传感器的新技术,索尼开发出了配备信号处理电路的积层构造。采用形成有信号处理电路的芯片代替原来的背面照射型CMOS图象传感器支持基板,在其上重叠形成有背面照射型像素的像素部分(下图)。 与原产品的构造比较(图:索尼)(点击放大)   采用新构造的传感器能在较小的芯片尺寸上配备大规模电路。另外,像素部分和电路部分分别为独立的芯片,因此像素部分可采用专门面向高画质化的制造工艺,电路部分可采用专门面向高功能化的制造工艺。此外,通过在形成有电路的芯片上采用尖端工艺,还可实现信号处理的高速化和低耗电量化。   索尼将把该传感器定位为兼顾高功能化和小型化的新一代CMOS图象传感器,并扩充产品系列。作为首批产品,
[手机便携]
如何构建依靠纤巧型双电池太阳能板工作的电池充电器
    引言     如今,低功率电子技术的发展允许将电池供电的 传感器 和其他设备安置在远离电网的地方。在理想的情况下,为了真正摆脱电网的束缚,就应免除更换电池的需要,而代之以由局部环境提供的可再生能源 (如太阳能) 对电池进行再充电。本设计要点说明了怎样构建一款依靠小型双电池太阳能板工作的紧凑型 电池充电器 。该设计的独特之处在于DC/DC转换器运用功率点控制以从太阳能板吸取最大的功率。     最大功率点控制的重要性     虽然太阳能电池或太阳能电池板是按照功率输出来分类,但电池板的可用功率却很少是恒定的。其输出功率在很大程度上取决于光照、温度以及从电池板吸收的负载电流。为说明这一点,图1示出了
[电源管理]
如何构建依靠纤巧型双电池太阳能板工作的电池充电器
AoP技术如何扩展雷达传感器在汽车中的应用
毫米波雷达为汽车和工业应用提供了一种高度精确的感应方式,可提供富有洞察力的物体信息,如距离、角度和速度,从而实现更智能的感应解决方案,用于检测几厘米到几百米范围内的物体。 通常,雷达传感器安装在由雷达收发器、天线、电源管理电路、存储器和接口外设组成的印刷电路板(PCB)上。PCB上的天线需要使用高频基板材料,如图1所示的银色材料 Rogers R03003。 图 1:PCB上带有天线的雷达传感器 封装天线(AoP)技术消除了对高频基板材料的需求,并降低了成本、制造复杂性和大概 30%的布板空间。TI的AoP技术利用倒装芯片封装技术将天线放置在无塑封基板上,防止因天线穿过塑封材料时产生损耗而降低效率并导致杂散辐射。使用多
[汽车电子]
AoP技术如何扩展雷达<font color='red'>传感器</font>在汽车中的应用
2017年OSD将以高于平均水平的速度增长,创六年来历史新高
  根据IC Insights市场研究最新数据显示,光电子、 传感器 和执行器分立半导体(OSD)的十几个产品类别将在2017年以高于平均水平的速度增长,达到六年来历史新高。下面就随网络通信小编一起来了解一下相关内容吧。   OSD报告更新显示,在 物联网 (IoT)市场增长、智能嵌入式控制水平提升,以及大宗商品分立器件库存补充等因素推动下, 多元化的OSD市场在三个细分领域的销售额预计将在2017年增长10.5%,达到750亿美元,创历史新高。 如下图,IC Insights根据2017年更新的销售预测,对五大OSD产品类别的年增长率进行了比较。2017年以来,除了一个主要的OSD产品LED灯具市场,其他领域的增长幅度都高于平
[网络通信]
振动筒式压力传感器的FLANN非线性校正
摘要:采用函数链神经网络方法对振动筒式压力传感器进行非线性校正,与BP算法相比,函数链神经网络结构明了、算法简单、易于收敛。文中介绍了函数链神经网络解决振动筒式压力传感器的非线性原理和建模方法,仿真实验结果证明了该方法的可行性和有效性。 0 引言 传感器的非线性校正有多种方法,并且也都得到了不同程度的应用。传统的非线性传感器线性化的方法是硬件补偿,这种方法难以做到全程补偿,而且补偿硬件的漂移会影响整个系统的精度,因此可靠性不高、测量范围有限、精度低。现在国内外研究人员研究了多种多项式拟合校正法,当用直线拟合时,拟合精度较低,通常不能满足要求;用高次曲线拟合又过于复杂,实现困难。近年来发展较多的是神经网络法,大都采用的是
[传感器]
振动筒式压力<font color='red'>传感器</font>的FLANN非线性校正
面声波传感器市场2016年全球将达11亿美元
    随着物联网的发展和智能时代的到来,传感器成为了发展最快且仍具有巨大发展潜力的仪器仪表产品之一。2012年表面声波(SAW)传感器全球市场将达到9.977亿美元,到2016年这个数值会增长至11亿美元。     根据研究报告,表面声波(SAW)传感器2010年在亚太地区规模达到3.74亿美元,此后更是将以年平均20.7%(CAGR)成长,届时2016年预计能够达到9.78亿美元。     表面声波(SAW)传感器在北美与中南美地区虽然市场规模相比亚太地区有小,但目前也达到了2.769亿美元,此后预计将以CAGR2.4%成长,2016年预计将达到3.93亿美元。     表面声波传感器依其波型分类,主要包括瑞利波、
[安防电子]
用生物传感器辅助驾驶,赛车变成实验场
    利用多种传感器测量驾驶员的生理状态及身体动作,然后将测量结果反馈给汽车控制系统以辅助驾驶员舒服安全地驾驶。这种辅助驾驶技术的开发突然活跃起来。在2012年10月的“CEATEC JAPAN 2012”上,阿尔卑斯电气展出了用图像传感器测量驾驶员视线及瞳孔的状态以推测心情和身体状态的系统。紧接着,2012年11月,美国飞思卡尔半导体的日本法人飞思卡尔半导体日本(以下称飞思卡尔)宣布将着手开发此类技术。 实时测量赛车手的生理状态和身体动作 利用肌电传感器和出汗传感器测量赛车手在驾驶过程中的生理状态,并用多个动作传感器测量身体动作。动作传感器测得的数据通过内置有MCU的无线模块无线传输到电脑进行记录和显示。    
[汽车电子]
无线传感器网络硬件平台的研究与设计
0 引言 无线传感器网络(Wireless Sensor Network)综合了微电子技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等先进技术,能够协同地实时监测、感知和采集网络覆盖区域中各种环境或监测对象的信息,并对其进行处理,处理后的信息通过无线方式发送,并以自组多跳的网络方式传送给观察者。传感器网络的应用前景十分广阔,在军事、工农业、环境监测,医疗护理、抢险救灾、危险区域远程控制以及智能家居等领域都有潜在的使用价值,已经引起了许多国家学术界和工业界的高度重视 。 传感器节点是传感器网络的基本构成单位,由其组成的硬件平台和具体的应用要求密切相关,因此节点的设计将直接影响到整个传感器网络的性能
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved