开关变压器之分布电容分析

最新更新时间:2013-12-23来源: 电源网关键字:开关变压器  分布电容 手机看文章 扫描二维码
随时随地手机看文章

开关电源电压输入回路的滤波电感,其分布电容的大小对EMC指标的影响非常大,因此也需要对滤波电感线圈的分布电容构成以及原理有充分的理解。从原理上来说,滤波电感线圈的分布电容与开关变压器线圈的分布电容基本上是没有根本区别的;因此,对分布电容的分析与计算方法,对滤波电感线圈同样有效。

开关变压器初、次级线圈的分布电容,对开关电源性能指标的影响也很重要,它会与变压器线圈的漏感组成振荡回路产生振荡。当输入脉冲电压的上升或下降率大于振荡波形的上升或下降率的时候,振荡回路就吸收能量,使输入脉冲波形的前、后沿都变差;而当输入脉冲电压的上升或下降率小于振荡波形的上升或下降率的时候,振荡回路就会释放能量,使电路产生振荡。如果振荡回路的品质因数比较高,电路就会产生寄生振荡,并产生EMI干扰。

另外,开关电源电压输入回路的滤波电感,其分布电容的大小对EMC指标的影响非常大,因此在这里也需要对滤波电感线圈的分布电容构成以及原理有充分的理解。从原理上来说,滤波电感线圈的分布电容与开关变压器线圈的分布电容基本上是没有根本区别的,因此,对变压器线圈分布电容的分析与计算方法,对滤波电感线圈同样有效。

开关变压器初、次级线圈的分布电容与结构有关,因此,要精确计算不同结构的开关变压器初、次级线圈的分布电容难度比较大。下面我们先以最简单的双层线圈结构的开关变压器为例,计算它们的初级或次级线圈的分布电容。

图2-41是分析计算开关变压器线圈之间分布电容的原理图。

设圆柱形两层线圈之间的距离为d,高度为h,平均周长为g 。假定两层线圈之间沿高度的电位差为线性变化,即:

 

设两个线圈相对应的两表层间的电场近似均匀分布,即近似平板电容器的电场,那么,根据(2-112)式就可以求得该电场贮存的能量为:

 

由此可以求得变压器初级或次级两层线圈之间分布电容的表达式:

 

对于图2-42-b,可求得变压器初级或次级两层线圈之间的分布电容为:

 

由此可知,变压器初级或次级两层线圈之间的分布电容,除了与变压器线圈的高度、周长、两层线圈之间的距离等参数相关外,还与两层线圈之间的电位差有关。

为了更好地对多层线圈的分布电容进一步进行分析,我们把(2-114)式改写成一个静态电容与一个动态系数相乘的形式,即:

  

当变压器的线圈为多层时,我们只需反复利用(2-117)式来对相邻两层之间的分布电容独立进行计算,然后把结果相加即可。如果一定要写出计算多层线圈分布电容的表达式,则变压器多层线圈的分布电容可表示为:

   

 

 

由此可以知道,变压器线圈的总分布电容的大小主要与线圈的层数(n-1)成正比,与层间的距离d成反比,并且与变压器线圈的连接方法还有关。

因此,我们不能把各层之间的分布电容当成普通电容的概念来理解。普通电容互相串联时,总电容的容量,总是小于其中任意一个电容的容量;而变压器线圈的层间分布电容看起来是属于串联,但其结果是越串连越大。这是为什么呢?这是因为变压器线圈层间分布电容的电压主要不是靠串联回路来充电的,而是靠线圈之间互相感应产生的。

不但如此,变压器次级线圈的分布电容同样也要感应到初级线圈来。大多数场合,在考虑变压器线圈总的分布电容的时候,一般都需要把初、次级线圈的分布电容一起来考虑。例如,电视机的高压包,其次级线圈绕组的分布电容一般都很大,折算到初级线圈后,初级线圈总的分布电容就更大,一般可达好几千微微法,如不采取分段绕线措施,最大可达好几万微微法。

 

直接对变压器线圈的总分布电容进行测试是有些困难的,但可以测试每层线圈之间的静态电容,方法是要把图2-42中线圈层与层之间的连线断开;然后把测量结果乘以一个动态系数,即得到本层的分布电容,最后把各层的分布电容全部相加即可得到总分布电容。

如果不考虑变压器次级线圈对初级线圈的影响,对于一个功率大约为100瓦的开关变压器,其初级线圈的分布电容大约在100~2000微微法之间;如果把次级线圈的分别电容也考虑进去,总的分布电容可能要大一倍左右。因此,分布电容对输出波形的影响也是很大的。

为了减少变压器线圈的分布电容,特别是EMC滤波器线圈的分布电容,最好不要把线圈分成多层叠绕,而是把线圈分段来绕,这样可以降低(2-119)式或(2-120)式中每层线圈的高度h,从而可以减小线圈总的分布电容。

关键字:开关变压器  分布电容 编辑:探路者 引用地址:开关变压器之分布电容分析

上一篇:详解处理电磁干扰故障
下一篇:开关变压器之铁芯磁滞的回线测量

推荐阅读最新更新时间:2023-10-12 22:32

平面变压器开关电源中的技术优势
  磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线圈,即没有漏磁通。而对普通变压器来说,初级线圈所产生的磁通并非都穿过次级线圈,于是就产生了漏感,电磁耦合的紧密要求也无法满足。而平面变压器只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以,平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。因此,平面变压器的特点就显而易见了:平面绕组的紧密耦合使得漏感大大地减小;平面变压器特殊的结构使得
[电源管理]
平面<font color='red'>变压器</font>在<font color='red'>开关</font>电源中的技术优势
单端反激开关电源变压器设计总结
的变压器设计进行了总结。   1、 已知的参数   这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。   2、 计算   在反激变换器中,副边反射电压即反激电压Vf与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定:Vf=VMos-VinDCMax-150V   反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。   Np/Ns=Vf/Vout   另外,反激电源的最大
[电源管理]
开关电源原理与设计(连载46)全桥式变压器开关电源的优缺点
1-8-3-5.全桥式变压器开关电源的优缺点 全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。 全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开
[电源管理]
小型无变压器开关电源设计实例
采用变压器的供电电源体积较大,在一些要求小体积的制作中难以使用。本文介绍的小型无变压器电源,能提供3~15V的电压,最大电流150mA,可满足小型电子设备的供电需要。   电路如图所示,220V经D2整流C1滤波,作为Q1的导通驱动电压,当220V正半周开始、但W滑动端上电压尚未足够大时,Q2处于截止状态,C1上的电压经R4加在Q1的栅极使Q1导通,220V正半周经D1、R5、Q1对电容C2快速充电。当W滑动端的电压升到足以使D3和Q2导通时,Q1栅极失去电压而截止。调节W即可调节对C2的充电时间,也就调节了输出电压。由于Q1的导通时间极短,因此C2选用了大容量电容,以保证有较平滑的输出电压。   电路中R5是限流电阻,可减小对C2
[电源管理]
小型无<font color='red'>变压器</font><font color='red'>开关</font>电源设计实例
平面变压器开关电源中的技术分析
磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线圈,即没有漏磁通。而对普通变压器来说,初级线圈所产生的磁通并非都穿过次级线圈,于是就产生了漏感,电磁耦合的紧密要求也无法满足。而平面变压器只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以,平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。因此,平面变压器的特点就显而易见了:平面绕组的紧密耦合使得漏感大大地减小;平面变压器特殊的结构使得它的
[电源管理]
开关电源原理与设计(连载14)正激式变压器开关电源的优缺点
      1-6-2.正激式变压器开关电源的优缺点       为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。       因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:       Sv = Up/Ua —— 电压脉动系数 (1-84)       Si = Im/Ia —— 电流脉动系数 (1-85)       Kv =Ud/Ua —— 电压波形系数 (1-86
[电源管理]
<font color='red'>开关</font>电源原理与设计(连载14)正激式<font color='red'>变压器</font><font color='red'>开关</font>电源的优缺点
开关电源之正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算 正激式 开关电源 变压器参数的计算主要从这几个方面来考虑。一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是 变压器 初、次级线圈的匝数比,以及 变压器 各个绕组的额定输入或输出电流或功率。关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。 正激式开关电源变压器初级线圈匝数的计算 图1中,当输入电压Ui加于开关电源 变压器 初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也
[电源管理]
<font color='red'>开关</font>电源之正激式<font color='red'>开关</font>电源<font color='red'>变压器</font>参数的计算
反激式开关电源变压器的设计方案
  反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。   算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。   第一步就是选定原边感应电压VOR
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved