基于DC/DC转换器电源设计原理、经验与应用技巧总结

最新更新时间:2013-12-27来源: 电源网关键字:DC/DC  转换器  电源设计 手机看文章 扫描二维码
随时随地手机看文章

“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的DC-DC转换器。这表示着新平台的功率密度、效率和热性能必须大幅提高。

众所周知,设计理想的DC-DC转换器涉及到众多权衡取舍。功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和PCB温度的提升。同样地,针对中等电流到峰值电流优化DC/DC电源,几乎也总是意味着牺牲轻载效率,反之亦然。本人结合自己十多年的DC-DC应用经验,谈谈DC-DC转换器的基本原理和设计经验技巧。

DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。降压式DC/DC变换器基本工作原理电路如图1所示。VT1为开关管,当VT1导通时,输入电压Vi通 过电感L1向负载RL供电,与此同时也向电容C2充电。在这个过程中,电容C2及电感L1中储存能量。当VT1截止时,由储存在电感L1中的能量继续向 RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。二极管VD1为续流二极管,以便构成电路回路。输出的电压Vo经R1和 R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

图1、降压式DC/DC变换器基本工作原理电路

DC-DC设计技巧

一.DC-DC电路设计至少要考虑以下条件:

1.外部输入电源电压的范围,输出电流的大小。

2. DC-DC输出的电压,电流,系统的功率最大值。二.基于以上两点选择PWM IC要考虑:

1. PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。对储能电感,电容的大小的选择也有一定影响。

3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。

4. MOS的开关电压Vgs大小及最大承受电压。

三.电感(L1),二极管(CR1),电容(C2)的选择

1. 电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。

2. 二极管:通常都用肖特基二极管。选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。

3. 电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:

1.输入部分:电源输入端需要加电感电容滤波。目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。

2.输出部分:

(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100uF的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。

(2) 在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源

PCB布线时,应注意几点:

1. 输入电源与MOS的连线要尽可能的粗。

2. Vgs也要粗一点,千万不要以为粗细没关系,(注:一般系统功率相对较低时,输出电流不大,粗细的影响不明显)关键时刻会影响电源的稳定性。

3. CR1, L1尽量靠近Q1。C2尽量靠近L1。

4. 反馈电阻的线尽量远离电感L1。

5. 反馈电压的地与系统的地尽量的近,保持在一个电位上。

6. CR1的地线千万要粗,在MOS的打开的时间里,L1的电流是由CR1的通路提供,即由地流向L1。DC-DC应用技巧

在常见的DC/DC变换器中,有很多的应用技巧是不为工程师所掌握的. 现拿 UTC P3596应用电路来作一个说明,与诸位分享交流:

DC-DC应用技巧一

当我们用这个电路做好 Buck 以后,电感量达到其 Spec. 的要求,却发现负载调整率过低.这种情况下,很多同学都认为芯片品质问题等等. 其实由于芯片的半导体工艺不能使内部的运放的带宽(bandwidth)做的很大.所以我们所做的要么就是屏蔽内部的运放(象我们常见的384X电路 1,2pin的连接方法);要么就是外部来补偿,在 R1 上并一个无极性电容加速内部运放对输出电压的反应。

分析也不是仅针对UTC P3596 的芯片,适用于全部的DC/DC,及其它的开关电源

开关电源作为一个反馈系统,当我们选用一个运放来做PID(比例积分微分),而我们选用运放要求的带宽要有足够的大,相应的相位裕度也比较大(当然在一定的性价比条件下). 用于适应响应反馈中采样的低频至高频的信号!

我们做低成本的充电器,可以用稳压管. 功率再大一些,就选用 TL431(内部一个运放加晶体管). 对于精度要求更好的,我们肯定不会用TL431或稳压管。对于很多开关电源工程师来说,一但调试搞不定,就会说补偿没调好/变压器没绕好,原因为何?

首先看一下,UC384X 内部结构图(注意看1/2脚之间的运放):

如果我们把2脚接地,用1脚作为反馈端;这实际上,就是把这个内部的运放接成一个跟随器,就是把这个运放给屏蔽了。DC-DC应用技巧二

在很多情况下,突然撤去负载或输入时,导致 Buck 电路内部的MOSFET 损坏.

分析原因:基本上是输出级的能量无处泄放,一种是自然放电,一种就会反灌!

基本上解决的方法就是在这样的 Buck 电路中,输入级至输出级反方向接一个二极管.

延伸:为什么我们在开关电源中所应用的MOSFET 中会集成一个反向的体二极管。同样我们在用VR(7805/7808 etc.)尽量会加一个反向二极管。

DC-DC应用技巧三

也有很多人说,短路电流大或者短路效果不明显.

碰到这样的可以尝试换一个线径来绕制这个电感,因为不同的线径在相同的磁环(磁棒)上都可以绕制到需求的电感量,但不同的线经会产生不同的ESR(等效电阻),而这个电阻是总负荷的一部分。

关键字:DC/DC  转换器  电源设计 编辑:探路者 引用地址:基于DC/DC转换器电源设计原理、经验与应用技巧总结

上一篇:技术分享:开关电源中的辅助电源系统及其设计
下一篇:浅谈艾默生HD22020-2型电源与PSM-A监控模块

推荐阅读最新更新时间:2023-10-12 22:32

数模转换器AD420及其与MSP430的接口技术
1 概述     AD420是ADI公司生产的高精度、低功耗全数字电流环输出转换器。AD420的输出信号可以是电流信号,也可以是电压信号。其中电流信号的输出范围为4mA~20mA,0mA~20mA或0mA~24mA,具体可通过引脚RANGE SELECTl,RANGE SELECT2进行配置。当需要输出电压信号时,它也能从一个隔离引脚提供电压输出,这时需外接一个缓冲放大器,可输出0V~5V,0V~10V,±5V或±10V电压。     AD420具有灵活的串行数字接口(最大速率可达3.3 Mb/s),使用方便、性价比高、抑制干扰能力强,非常适合用于高精度远程控制系统。AD420与单片机的接口方式有2种:3线制和异步制。单片机系统通
[单片机]
数模<font color='red'>转换器</font>AD420及其与MSP430的接口技术
基于MC32P21单片机的移动电源设计
移动电源是一种集供电和充电功能于一体的便携式充电器,可以给手机等数码设备随时随地充电或待机供电。一般由锂电芯或者干电池作为储电单元。区别于产品内部配置的电池,也叫外挂电池。一般配备多种电源转接头, 通常具有大容量、多用途、体积小、寿命长和安全可靠等特点,是可随时随地为智能手机、平板电脑、数码相机、MP3、MP4等多种数码产品供电或待机充电的功能产品。 移动电源可以通过USB电缆线使用在任何符合USB国际标准的设备,其具有短路、过充过放、恒流恒压等保护措施,还有高性能电源管理技术。 移动电源方案,根据是否可以编程,分为硬件移动电源和软件移动电源两种技术路线。硬件移动电源方案主要存在的问题是:1.发热严重,采用非同步整流模式,温度高后
[电源管理]
基于MC32P21单片机的移动<font color='red'>电源设计</font>
如何设计面向大降压比应用的同步降压转换器
   引言   DC-DC降压转换器已在工业领域得到了广泛应用,其中最常用到的拓扑便是降压转换器。 半导体 技术的发展使得现今的电子设备能在越来越低的3.3V、2.5V、1.8V甚至低至1V电压下工作。传统采用一个二极管的降压转换器的转换效率很低,尤其是在较低的输出电压下,原因是由于二极管通常会消耗不少的功率,其典型正向电压降为0.35V~0.5V,从而造成了较大比例的功率损耗。同步降压转换器采用MOSFET来代替二极管,该解决方案具有高效率、高输出电流和低输出电压等优势。MOSFET中的电压降与其接通电阻和电流成比例,其典型值为0.1V~0.3V。因此,功率损耗便可大大下降,从而达到很高的转换效率。另一方面,许多应用要求的
[电源管理]
如何设计面向大降压比应用的同步降压<font color='red'>转换器</font>
升压式DC/DC变换器基本工作原理
  升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。   升压式DC/DC变换器的基本工作原理如图所示。   电路中的VT为开关管,当脉冲振荡器对双稳态电路置位(即Q端为1)时,VT导通,电感VT中流过电流并储存能量,直到电感电流在RS上的压降等于比较器设定的闽值电压时,双稳态电路复位,即Q端为0。此时VT截止,电感LT中储存的能量通过一极管VD1供给负载,同时对C进行充电。当负载电压要跌落时,电容C放电,这时输出端可获得高于输大端的稳定电压。输出的电压由分压器R1和R2分压后输入误差放大器,并与基准电压一起去控制脉冲宽度
[电源管理]
升压式<font color='red'>DC</font>/<font color='red'>DC</font>变换器基本工作原理
凌力尔特模拟数字转换器提供148dB动态范围
凌力尔特(Linear)宣布推出一款超高精准度的32位逐次渐近缓存器型(SAR)模拟数字转换器(ADC) LTC2500-32。 此模拟数字转换器为一因应精准测量应用的新型和可行方法,该组件将凌力尔特SAR ADC架构的高准确度和速度与弹性的整合化数字滤波器结合,以优化系统讯号带宽并放宽模拟抗混迭滤波器要求。 LTC2500-32 同时提供两个输出,一个经数字滤波的32位低噪声输出,该输出实现了高达148dB的动态范围。 一个32位1Msps无延迟输出,该输出由一个超范围检测位、一个表示输入电压差的24位代码和一个表示共模输入电压的7 位代码组成。 无延迟输出在本质上与数字滤波输出是完美匹配的,因此在需要使用附加较快速ADC与一个
[半导体设计/制造]
24位Σ-Δ模数转换器CS1240在电子秤中的应用
芯海科技有限公司自主研发的CS1240是一款24位高精度、低功耗Σ-Δ模数转换芯片,其分辨率为24位,有效精度高达21位,可以在2.7V-5.5V电源电压条件下工作。 CS1240具有8个模拟输入端、8个数字输入输出通道, 可以选择输入通道模拟缓冲器或者直接将信号输入模数转换器,模拟缓冲器可以有效提高芯片的输入阻抗。芯片提供内部测试电流(2微安),可以检测输入端开路或短路情况。集成的8位数模转换器(DAC)可以通过寄存器控制来调节输入信号的偏置电压,有效扩大输入信号的范围,最大可以调整满幅度(FS)的50%。 CS1240/1241带有片内1~128倍可编程增益放大器(PGA),在128倍时,有效分辨率可达19位。调制器是一个二
[测试测量]
STM32CubeMX系列教程7:模数转换(ADC)
本章通过两个例程介绍STM32的模数转换器(ADC),第一个通过ADC采集内部温度传感器通道电压,然后得出MCU内部温度。第二个通过DMA的方式采集两个ADC通道电压。 1.ADC 本章程序在串口printf工程的基础上修改,复制串口printf的工程,修改文件夹名。击STM32F746I.ioc打开STM32cubeMX的工程文件重新配置。ADC1外设选择温度传感器通道。 ADC1配置如下,选择默认设置。其Date Alignment设置为数据右对齐。 生成报告以及代码,编译程序。在adc.c文件中可以看到ADC初始化函数。 在stm32f7xx_hal_adc.h头文件中可以找到如下ADC操作函数
[单片机]
STM32CubeMX系列教程7:模数转换(A<font color='red'>DC</font>)
飞兆的电平转换器简化SD卡应用设计
飞兆半导体公司 (Fairchild Semiconductor) 推出专为安全数字 (SD) 应用的设计人员而设能够简化其设计的低电压、双电源 SD 接口电平转换 FXL2SD106 ,具备内置的自动方向控制功能,可让器件感测和控制数据流动的方向,而无需方向控制接脚。这种自动方向控制功能降低了设计的复杂性,无需对控制方向的通用 I/O 接口 (GPIO) 进行编程,并将控制电平转换器所需的接脚数从 20 个减少到 16 个。这种转换器是打印机、笔记本电脑、 GPS 系统和带相机手机等使用 SD 卡应用的理想选择。 飞兆半
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved