原边反馈AC/DC控制技术是近10年发展起来的新型AC/DC控制技术,与传统的副边反馈的光耦加431的结构相比,最大的优势在于省去了这两个芯片以及与之配合工作的一组元器件,这样就节省了系统板上的空间,降低了成本并且提高了系统的可靠性。在手机充电器等成本压力较大的市场,以及LED驱动等对体积要求很高的市场具有广阔的应用前景。
在省去了这一组元器件之后,为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。
初级调节的原理是通过精确采样辅助绕组(NAUX)的电压变化来检测负载变化的信息。当控制器将MOS管打开时,变压器初级绕组电流ip从0线性上升到ipeak,公式为
表示,其中VCS是CS脚上的电压,其他参数意义如图1所示。这是恒压(CV)模式的工作原理。
其中C1是一个小于0.5的常数,VCSLMT是CS引脚限压极限值。在使得去磁时间与开关周期的比例保持一个常数后,输出的电压和电流就都与变压器的电感值无关了,因此在实用层面上降低了应用方案对同批次电感感值一致性的要求,从而降低了大规模生产加工的成本。
与此同时,原边反馈系统还会面临线缆压降的问题。因为系统不是直接采样输出端(次级绕组整流后)的电压,而是通过采样辅助绕组的去磁结束点的电压来控制环路反馈的,因此,当输出线较长或者线径较细时,在负载线上会存在较大的内阻(例如在充电器方案中)。在负载电流变化较大的情况下,输出线的末端电压也会有较大变化。在CV模式下,这种变化在某些场合是不能接受的,因此,原边反馈驱动芯片还应该提供对线缆压降补偿的功能,这个功能通常是通过在INV脚上拉一个小电流来实现的。通过预估补偿值来调节连接在INV脚上的分压电阻的总阻值(分压比例不变),从而补偿不同负载线型和负载大小带来的线缆压降,以维持CV曲线的水平性(如图2中的CV曲线)。
此外,一款好的原边反馈AC-DC控制器还应该具备优秀的EMI特性,对于传导和辐射这两方面的干扰都应该尽可能降低,目前常见的做法是采用抖频技术和驱动信号柔化技术。抖频技术是指在开关频率的基频基础上引入一个小幅度的频率变化值,以此来降低在开关频率点上的频谱能量强度,优化EMI特性。而驱动信号柔化技术则是指将驱动MOS管栅极的驱动信号的开启沿(上升沿)变得比较平滑,以减小MOS管开启瞬间的能量传导和辐射,从而进一步优化EMI特性。
芯联半导体推出的CL1100就是一款具备初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术的原边反馈AC-DC控制器,并且具有多种保护功能,例如软启动、逐周期的过流保护(OCP)、CS采样端前沿消隐(LEB)、以及过压保护(OVP)和欠压保护(UVLO)。实测的CL1100的恒压/恒流特性曲线如图3所示,该芯片可将恒压/恒流精度都控制在±3%之内。
本文小结
随着小功率隔离AC-DC的应用向更低成本及更小体积的趋势发展,原边反馈的AC-DC控制芯片应运而生。为了满足高精度的恒流和恒压应用要求,原边反馈控制芯片采用了初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。这些技术的采用保证了原边反馈的AC-DC控制芯片对于应用电源范围,不同特性的负载以及元器件批次容差都具有了很强的适应性,因而成为一种可以广泛应用于不同场合的控制技术。
关键字:AC/DC 控制技术芯片
编辑:探路者 引用地址:基于AC/DC控制技术芯片的原边反馈技术问题研究
推荐阅读最新更新时间:2023-10-12 22:33
电信服务器AC/DC电源设计与注意事项
使用TI的 模拟 PFC和PWM 控制 器以及高性能 驱动 器与收发器的服务器 AC/DC 电源 和通信整流器的方框图 (SBD)。
方框图
设计注意事项
目前,AC/DC 电源开发者面临的挑战是实现高功率因数、低 THD 以及线路和负载条件下的高效率、高功率密度或缩小尺寸、高可靠性以及低系统成本。交错 PFC、无桥接 PFC、相移全桥 DC/DC、LLC 谐振 DC/DC 和 ZVS PWM DC/DC 等高级电源拓扑在当今的设计中广泛用于解决这些需求。大多数 AC/DC 电源使用双路 PWM 控制器、PFC 控制器和 DC/DC 控制器。但是,也有使用单路模拟控制器或组合 PFC 和 DC/DC 控制器的低功耗
[电源管理]
儒卓力提供RECOM 的5W AC/DC转换器系列
具有OVC III和PD3标准等级:儒卓力提供RECOM 的5W AC/DC转换器系列 在污染严重的情况下仍具有高可靠性:通过提供 RECOM 的 RAC05-K/PD3/H,儒卓力的产品组合已涵盖具有Class II性能,用于 PCB 安装的 5W AC/DC 转换器 系列。该系列专为固定装置而开发,在这些装置中会出现符合过电压类别 III的较高水平瞬态值以及增加的环境应力。这样显着减少了对外部干扰抑制组件的需求。这些转换器用于智能电网、可再生能源应用、智能计量和物联网系统,以及食品和饮料行业的监控设备。 这些转换器提供 5VDC 或 12VDC,并按需提供 15VDC单输出,具有扩展的电气间隙以确保满足高达 50
[电源管理]
安森美推出两个新系列的功率因数校正AC-DC驱动器
为单段式方案扩增了高功率因数能力,将双段式方案的功率能力拓宽至最高150 W。
2014年12月17日 – 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)推出两个新系列的功率因数校正(PFC)离线AC-DC驱动器,用于高性能LED照明应用。NCL30085、NCL30086及NCL30088扩充了NCL3008x产品谱系,用于要求高功率因数的最高60瓦(W)功率的单段式设计应用。NCL30030则拓宽已有方案,支持要求低光学纹波及宽LED正向电压变化范围的更高功率(最高150 W)两段式拓扑结构。
安森美半导体AC-DC电源转换分部高级总监Shan
[电源管理]
同时实现功率因数改善与高效率的ROHM最新AC/DC电源技术
在电子设备开发中,电源的高效化已经逐年成为重要主题。另外,不仅是面临电力能源问题的日本,在全世界的发电和输电相关的电力公司,功率因数改善设备的普及与高效率同样是重中之重。在此介绍同时实现了设备工作时的功率因数改善与待机时的高效率的 AC/DC 电源技术。 1. 功率因数与功率因数改善电路(PFC:Power factor correction) 功率因数是指是否将电力公司生产的电力毫无损耗地输送到电子设备的数值;效率是指是否将该电力毫无损耗地 转换的数值。当交流电力的电压与电流的相位差为φ时,按功率因数=COSφ求得功率因数,当电压与电流没有相位差,即正弦波时功率因数为1。 简单地说,单纯的电阻负载时,电压与电流波形不发生相位
[电源管理]
新颖的小功率集成的AC-DC转换器方案
随着半导体技术的不断进步,为系统设计师、电路设计师实现技术创新提供了一个先进的技术平台,从而有许许多多新颖的、时尚的便携式电子产品呈现在世人面前,像PDA、3G手机、各种个人电子医疗保健装置以及层出不穷的游戏机等等。这些便携式电子产品大多需要高档的开关电源来供电或充电,此外,还有许多先进的便携式仪器仪表,工控装置乃至像剃须刀这样的日常用具也需要开关电源。正是在这种背景下,PHILIPS推出了STARplug电源IC产品系列。 该系列不但满足了便携式电子产品微功耗、高可靠、微小型化等要求,还满足了使用安全性和环保的需求。
关于STARplug产品系列 STARplug有两个系列,即TEA152X系列和TEA16
[电源管理]
利用谷值电压开关和多工作模式提高AC/DC转换器效率
当前在AC/DC应用中,电源转换效率和节能性能的提高变得越来越重要,满负载效率在AC/DC电源设计中一直是一项主要考虑因素。现在我们最关心的是,如何在轻负载和空负载时实现更好的节能性能,因为越来越多的电源适配器在待机模式下由电网进行供电。由于在全球此类适配器的数量增长迅速,因此大家正在开发新的节能标准。
这些新标准概括了对电源的要求,以在不同的工作模式下进行更好的能源利用。为了符合这些新的节能要求,准谐振控制和谷值电压开关(Valley-Voltage Switching)等技术,以及包括跳脉冲(pulse-skipping)在内的多模式工作模式越来越受到行业的关注。其高效性证明了这些技术可以实现AC/DC转换器从空负
[电源管理]
基于VIPER26LD隔离反激式AC/DC电源设计方案
器件提前频率抖动降低了EMI滤波器的成本。突发模式操作和非常低电耗,有助于满足节能法规所定的标准。 图1 VIPER26LD内部方框图 图2 VIPER26LD方案原理图 VIPER26LD主要特性 800V雪崩耐用电源 PWM操作,频率抖动,用于低EMI 工作频率 - 60kHz的L型 - 115kHz H型 待机功耗 50mW在265VAC 限制电流设定点可调 板载软启动 故障状态后安全自动重启 迟滞热关断 VIPER26LD应用 辅助电源电器 电能计量 LED驱动器 表1 VIPER26LD方案材料清单 SMPS机顶盒,DVD播放机和录像机 VIPER26LD方案 STEVAL-ISA081V1
[电源管理]
用于LED照明的AC-DC电源方案介绍
LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。这些LED照明设计挑战和电源设计挑战类似,具体讲,LED通用照明有以下几个挑战:由于总光效要求及散热限制的影响,即使是低功率应用能效也很重要;在许多情况下,较低功率也要求功率因数校正和谐波处理;在空间受限应用中,特别是替代灯泡应用时,对驱动功率密度的要求很高;总体电源可靠性对提高整个灯的寿命非常重要;宽输入电源电压范围应该支持高达277 Vac;兼容TRIAC调光等传统特定照明要求。另外,LED通用照明还要符合仍在演进的标准及安全规范,如美国“能源之星”和欧盟的国际电工委员会(IEC)要求。 安森美半导体一直致力于为LED
[电源管理]