太阳能光伏电能的完整单芯片解决方案

最新更新时间:2014-01-11来源: 电源网关键字:太阳能  光伏电能 手机看文章 扫描二维码
随时随地手机看文章

为了简化仪器、监视和控制应用的无线通信所需的配电系统,电源设计师努力寻找不依赖电网的器件。电池显然是不依赖电网的解决方案,但是电池需要更换或再充电,这意味着最终还是要连接到电网上,而且需要昂贵的人工干预和维护。我们提出用能量收集的方法,使用这种方法时,能量是从紧挨着仪器的环境中收集的,无需连接到电网就可以使仪器永久运行,而且最大限度地削减或消除了维护需求。

可以收集各种环境能源以产生电能,包括机械振动、温度差和入射光。其中,光伏能量收集有广泛的适用范围,因为光几乎到处都有,光伏(PV)电池价格相对较低,而且与其他环境能量收集解决方案相比,能产生相对较高的功率。因为光伏能量收集方法提供相对较高的能量输出,所以可用来给无线传感器节点供电,还可用来给较高功率的电池充电应用供电,以延长电池寿命,从而在某些情况下完全无需有线充电。

串联连接的高压光伏电池组能提供充足的功率,但单节光伏电池解决方案却很少见,因为单节光伏电池在有负载情况下产生的电压很低,从这么低的电压难以产生有用的电源轨。几乎没有升压型转换器能从电压很低、阻抗相对较高的单节光伏电池产生输出。不过,LTC3105是专门为应对这类挑战而设计。该器件具有超低的250mV启动电压和可编程最大功率点控制,能从富有挑战性的光伏电源产生大多数应用所需的典型电压轨(1.8~5V)。

了解光伏电池电源

可以用一个电流源与一个二极管并联来建立光伏电源的电模型,如图1所示。更复杂的模型可显示一些次要影响,但是就我们的目的而言,这个模型足够充分了。

反映光伏电池特性的两个常见参数是开路电压和短路电流。光伏电池的典型电流和电压曲线如图2所示。请注意,短路电流是该模型电流发生器的输出,而开路电压是该模型二极管的正向电压。随着光照射量的增加,该发生器产生的电流也增加,同时 IV 曲线向上移动。

 

为了从光伏电池抽取最大功率,电源转换器的输入阻抗必须与电池的输出阻抗匹配,从而使系统能在最大功率点上工作。图3显示了一个典型的单节光伏电池的功率曲线。为了确保抽取最大功率,光伏电池的输出电压应该与功率曲线的峰值点相对应。LTC3105 调节提供给负载的输出电流,以保持光伏电池的电压等于最大功率点控制引脚设定的电压。因此可用单个电阻器设定最大功率点,并确保从光伏电池抽取最大功率和峰值输出充电电流。

可提供多少功率?

用光伏电池可产生多少功率取决于多种因素。电池的输出功率与投射到电池上的光强度、电池的总面积以及电池的效率成正比。大多数光伏电池都规定在完全直射的太阳光 (1000W/m2) 下使用,但是在大多数应用中,不可能有这么理想的条件。就依靠太阳光工作的设备来说,可从电池获得的峰值功率可能非常容易变化,由于天气、季节、烟雾、灰尘和太阳光入射角的变化,今天与明天相比有可能相差10倍。在充足的太阳光照下,晶体电池视电池特性的不同而有所不同,典型输出功率约为每平方英寸 40mW。面积为几平方英寸的光伏电池足够给多个远程传感器供电以及给电池涓流充电了。

相比之下,靠室内照明光工作的设备可用能量要少得多。常见的室内照明光的强度约为充足太阳光的0.25%(室内照明光强度与太阳光强度的巨大差别难以察觉,因为人眼能适应很宽的光照强度范围)。室内应用可用的光照量低得多,因此呈现了一些设计上的挑战。即使面积为4平方英寸的大型高效率晶体电池,在典型办公室照明条件下,也仅能产生860μW功率。

选择最大功率点控制电压

图4显示了LTC3105 使用的最大功率点控制机制的模型。图3显示了光伏电池的功率曲线。请注意,当电池电压上升而离开峰值功率点时,光伏电池的功率就会从峰值点急剧下降。因此,一般更希望低于理想值而不是高于理想值的控制电压,因为功率曲线在高压端下降得更快。

 

当选择MPPC跟踪电压时,各种不同的工作条件都必须考虑。一般情况下,最大功率点不会随着照明条件的变化而显着移动。因此,有可能做到的是,选择一个跟踪电压,以在很宽的照明强度范围内,保持靠近最大功率点工作。即使在极端照明情况下,工作点可能不是准确地位于最大功率点上,输出功率相比理性情况的降低通常也仅为5%~10%。就图5所示功率曲线而言,0.4V的MPPC电压在两种极端照明条件下都产生接近最大功率点的性能。在这两种情况下,与最大功率点之间的电压差约为20mV,从而产生了不到3%的功率损失。

 

作为一个经验法则,最大功率点控制电压应该约为光伏电池开路电压的75%~80%。让电池跟踪这样的电压,所产生的电池输出电流为短路电流的75%~80%。

在室外照明情况下给锂离子电池充电

使用光伏电源的应用面临的挑战之一是,在黑暗和光照量较低的情况下,输入功率不足。就大多数应用而言,这种挑战使得有必要使用能量存储组件,例如足够大的超级电容器或可再充电电池,以在最长预期黑暗时间内也能正常供电。

利用图6所示的LTC3105电路和一个2英寸×1英寸的多晶光伏电池给锂离子电池充电,所测得的充电电流曲线如图7所示。图7中上面的曲线显示,在天气晴朗、阳光充足的典型情况下的充电电流;下面的曲线则显示,在阴云密布时观察到的充电电流。即使在这类光照量很低的情况下,在整个白天也能保持250μA或更大一些的充电电流,这相当于给电池提供了总共 6mAh 的充电。 

选择合适的能量存储器件

就储存收集的能量而言,有很多可选方案,包括种类繁多的可再充电电池技术和高能量密度电容器。没有一种技术能适用于所有应用。为应用选择存储组件时,要考虑很多因素,包括自放电速率、最大充电和放电电流、电压灵敏度和周期寿命。

在光伏应用中,自放电速率尤其重要。在大多数光伏电源应用中,可用充电电流都很有限,高的自放电速率可能消耗大部分来自光伏电源的可用能量。有些能量存储组件 (例如大型超级电容器)自放电电流也许超过100μA,这又可能显着削减白天充电周期积累的净电荷。

另一个关键考虑因素是能量存储器件的充电速率。例如,最大充电电流为300μA的锂离子币形电池需要在电池和 LTC3105输出之间有一个大的电阻器,以防止过流情况。这可能限制能收集的能量,从而削减可用于应用的能量。

在很多情况下,充电速率与另一个重要因素“周期寿命”成正比。存储组件的周期寿命决定该组件不用维护可以在现场工作多长时间。一般而言,更快的充电和放电会缩短组件的工作寿命。超级电容器拥有非常长的周期寿命,而用相对较高的电流(电荷》1C)给电池充电会缩短寿命。除了充电和放电速率,每个充电/放电周期的深度也可能影响电池寿命,周期越深,寿命越短。某些类型的电池,尤其是锂离子电池和薄膜电池,最高和最低电压都必须仔细控制。在LTC3105应用中,最高充电电压得到了良好控制,因为当输出进入稳定状态后,转换器终止充电。为了防止过充电,LTC3105可与LTC4071并联电池充电器一起使用,如图8所示。

 

 

结论

LTC3105是一款完整的单芯片解决方案,适用于从低成本、单节光伏电池收集能量。其集成的最大功率点控制和低压启动功能允许直接用单节光伏电池工作,并确保最佳能量抽取。LTC3105可用来直接给电路供电,或给能量存储器件充电,以允许在黑暗或光照很少时工作。LTC3105使其有可能实现自主远程传感器节点、数据收集系统,以及其他要求不依赖电网和最低限度维护的应用。

关键字:太阳能  光伏电能 编辑:探路者 引用地址:太阳能光伏电能的完整单芯片解决方案

上一篇:三种软包装锂离子电池性能
下一篇:浅析铅酸蓄电池的使用、维护

推荐阅读最新更新时间:2023-10-12 22:33

晶体硅太阳能电池激光边缘绝缘化处理
  伴随着晶体硅太阳能电池产业的稳步发展,激光一直被认为是提高电池质量和降低制造成本的重要工具。激光加工在诸如激光烧蚀电极(LFC)、激光刻槽掩埋栅电极(LGBC)、以及M/EWT等应用增长显著,目前在晶体硅太阳能电池制造中应用最广泛的激光工艺之一是激光边缘绝缘处理。   c-Si电池制造过程中N型离子掺杂/扩散到P型硅基体形成微米级的N型掺杂膜层,这个膜层包围了整个晶圆片,从而造成了电池前后两面电极的分流,为了避免分流就必须对电池边缘进行绝缘化处理。   典型的激光边缘绝缘化处理是通过在尽可能靠近太阳能电池外缘的周围进行刻划沟槽来实现。为了获得最佳的绝缘效果,沟槽的深度必须大于离子扩散层,典型的沟槽深度为10-2
[电源管理]
晶体硅<font color='red'>太阳能</font>电池激光边缘绝缘化处理
便携式太阳能电池及蓄电池综合测试仪
  一、太阳能电池板及蓄电池参数   需测太阳能电池板和蓄电池的主要参数有:    开路电压 (Voc),没有电流时的电池电压    短路电流(Isc),负载电阻为零时从电池流出的电流    电池最大功率输出(Pmax),电池产生最大功率时的电压和电流点。通常把I-V   曲线上的Pmax点作为最大功率点(MPP)    Pmax的电压(Vmax),电池在Pmax的电压电平    Pmax的电流(Imax),电池在Pmax的电流电平    器件的转换效率( ),太阳能电池接到电路时转换(从吸收光至电能)和收集   功率的百分比。   二、测试仪系统的构成
[电源管理]
科学家打造人造黑洞 有望用于太阳能发电
据英国《新科学家》杂志15日报道,两名中国科学家首次制造出可以吸收周围光线的人造电磁“黑洞”。这个黑洞目前在微波频率下工作,或许不久后它就能够吸收可见光,一种把太阳能转化为电能的全新方法可能因此产生。    由于这个人造黑洞并非像太空中的黑洞那样,依靠自身巨大质量产生的强大引力来吸收光线(或电磁波),因此非常安全,不用担心它会把地球吞噬。    新理论提供设计方案    今年年初,美国印第安纳州西拉斐特市普渡大学(Purdue University)的伊维根•纳瑞马诺维(Evgenii Narimanov)和亚历山大•基尔迪谢维(Alexander Kildishev),在发表的一篇论文中提出制造可以用来
[半导体设计/制造]
东风Honda启用太阳能光伏发电系统
2月3日,Honda在中国的合资企业——东风本田汽车有限公司(以下简称:东风Honda)正式启用综合办公楼太阳能光伏发电系统,通过导入清洁新能源,削减CO2排放,为保护地球环境做贡献。     东风Honda本次启用的太阳能光伏发电系统于2007年底立项,经过将近一年的前期考察和调研,2009年10月正式开工建设,建设周期为98天,总投资额467万元。该系统所发的电量主要供东风Honda综合办公楼的日常照明使用,整套系统年发电量约10万度(※注),相当于综合办公楼照明总用电量的4%,据此每年可减少约101吨CO2排放(※注),相当于约101万平方米森林的吸收量。     此外,东风Honda计划于2012年投产的第二工厂也将采
[新能源]
KIST利用太阳能改善锌空气电池的性能 能量密度提高约7%
锌空气电池通过空气中的氧与锌发生化学反应而产生电力,有望替代锂离子电池,满足新一代 电动汽车 的需求。理论上来讲,其具备充电电池的所有必要特征,如能量密度高、爆炸风险少、环保和材料成本低。 (图片来源:sciencedirect) 据外媒报道,韩国科学技术研究院(KIST)的研究团队开发了一种技术,利用太阳能来提高锌空气电池的电化学性能。这是充电电池领域的新兴研发方向。 该团队开发的这种电池,利用具有交替能级半导体结构的光活性双功能空气电催化剂,明显提高氧还原反应(ORR)和析氧反应(OER)的效率,以产生电力。这种光活性双功能催化剂是一种化合物,通过吸收光能来加速化学反应,与传统锌空气电池催化剂相比,其光吸收能力更
[汽车电子]
KIST利用<font color='red'>太阳能</font>改善锌空气电池的性能 能量密度提高约7%
基于太阳能照明原理、组成及控制系统设计
0 引言 随着全球能源的日益紧张,太阳能光伏照明得到了迅速发展。在太阳能照明系统的发展中,人们不断的对照明系统常用的控制模式进行分析,设计各种实际可行的工作模式,同时光源技术也在不断的更新换代中,蓄电池的充电模式也在不断的研究探索中,有效利用率越来越高。在太阳能各个组成部分的发展和协调中,太阳能照明系统正在不断发展完善。   1 太阳能灯的原理及组成 太阳能灯具系统为直流型独立光伏系统。太阳能电池组件将太阳能转化为电能,通过控制器进行控制及保护,将电能转变为化学能储存在蓄电池中。当用电时,蓄电池再将化学能转化为电能,供直流负载使用,或者通过逆变器逆变为交流电供交流负载使用。只有当长时间无光照以致电池中的电能用完时,这
[嵌入式]
太阳能电池
太阳能电池又称为“太阳能芯片”或 “光电池” ,是一种利用太阳光直接发电的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,缩写为 PV ),简称 光伏 。 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的晶硅太阳能电池为主流,而以光化学效应工作的薄膜电池和太阳能电池则还处于萌芽阶段。 发展 数据显示2012年,我国太阳能电池继续保持产量和性价比优势,国际竞争力愈益增强。 随着太阳能电池行业的不断发展,产业竞争也在不断加剧,大型太阳能电池企业间并购整合与资本运作日趋频繁,国内优秀的太
[电源管理]
基于51单片机的太阳能路灯控制系统设计方案
简介:太阳能路灯控制系统:51单片机练手项目,简单可复制。 带太阳能充电功能,oled显示, 白天根据光强判断开关灯晚上开灯,二级菜单可以设置时间日期。 太阳能充电:传统锂电池充电芯片TP4056,使用6V太阳能板,给3.7V18650电池充电。 经过资料显示 18650电池尽量不要让其电压低于2.7V,所以后级供电电路(5V升压电路)MT3608启动引脚EN脚 连接了LM393制成的电压比较器。和电池电压比较,电池电压低于2.7v,MT3608启动脚拉低关断。 供电:使用升压芯片MT3608给单片机供电,让电池电压稳定在5.1V,来提供稳定电压。 #include reg52.h #include oled.h #i
[单片机]
基于51单片机的<font color='red'>太阳能</font>路灯控制系统设计方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved