EMI/EMC设计讲座:印刷电路板的EMI噪讯对策技巧

最新更新时间:2014-01-12来源: 电源网关键字:EMI  EMC设计  印刷电路 手机看文章 扫描二维码
随时随地手机看文章

随着电子组件功能提升,各种电子产品不断朝向高速化方向发展,然而高性能化、多功能化、可携带化的结果,各式各样的EMC(Electro Magnetic Compatibility)问题,却成为设计者挥之不去的梦魇。

目前EMI(Electro Magnetic Interference)噪讯对策,大多仰赖设计者长年累积的经验,或是利用仿真分析软件针对框体结构、电子组件,配合国内外要求条件与规范进行分析,换句话说电子产品到了最后评鉴测试阶段,才发现、对策EMI问题,事后反复的检讨、再试作与对策组件的追加,经常变成设计开发时程漫无节制延长,测试费用膨胀的主要原因。

EMI主要发生源之一亦即印刷电路板(Printed Circuit Board,以下简称为PCB)的设计,自古以来一直受到设计者高度重视,尤其是PCB Layout阶段,若能够将EMI问题列入考虑,通常都可以有效事先抑制噪讯的发生,有鉴于此本文要探讨如何在PCB的Layout阶段,充分应用改善技巧抑制EMI噪讯的强度。

测试条件

如图1所示测试场地为室内3m半电波暗室,预定测试频率范围为30MHz~1000MHz的电界强度,依此读取峰值点(Peak Point)当作测试数据(图2)。

图3是被测基板A的外观,该基板为影像处理系统用电路主机板,动作频率为27MHz与54MHz,电路基板内建CPU、Sub CPU、FRASH,以及SDRAM×5、影像数据/数字转换处理单元、影像输出入单元,此外被测基板符合「VCCI规范等级B」的要求,测试上使用相同的电源基板(Board)与变压器(Adapter)。

首先针对被测基板A进行下列电路设计变更作业:

‧CPU的频率线(Clock Line)追加设置EMI噪讯对策用滤波器(Filter),与频率产生器(Clock Generator)( 图4)。

‧影像输出入单元追加设置Common mode Choke Coil(DLWxxx系列)(图5)

‧各IC电源输入线的Bypass Condenser与电源之间,追加设置Ferrite Beads(图6)。

‧追加设置Bypass Condenser,使各IC的所有电源脚架,全部从基板电源层(Plane)通过Bypass Condenser提供电源(图7)。

各种EMI噪讯对策

a.EMI噪讯对策用电容

接着进行EMI测试获得图8的测试结果,根据测试结果再进行噪讯抑制设计作业,在此同时将设计变更的被测基板A的设计数据读入EMI噪讯抑制支持工具,并针对支持工具指出的主要部位,例如频率线、Bus导线Via周围,分散设置EMI噪讯对策用电容(图9),主要原因是信号导线的return路径如果太长或是非连续状态时,EMI噪讯有增大之虞,为了缩短Return路径,因此设置连接电源与接地的电容。

图10~图13是改变上述电容容量时的EMI噪讯测试结果,根据测试结果显示,依照图14的频率范围设置的大容量EMI噪讯对策用电容DuF,可以抑制低频噪讯Level。虽然设置电容增加PCB的容量负载,不过为了要抑制噪讯,设置在各部位的电容频率特性,却可以发挥预期的EMI噪讯抑制效果。

实际应用时只要在频率导线、Bus导线等高频导线

图案(Pattern)附近、形成CPU、Return路径的内层面(Plane)的分断附近、形成噪讯出入口的基板侧面附近分散设置EMI噪讯对策用电容,就可以消除该部位周边的噪讯。

对各式各样基板外形、组件封装、导线的PCB而言,只要以一定间隔设置EMI噪讯对策用电容,同样可以获得分散性的噪讯抑制效果。b.改变基板的层结构

接着针对被测基板A进行层结构改善,制作图15所示6层Built up被测基板B,它是利用「Pad on Via」与「雷射Via」加工技术,将上述被测基板A的外层信号线导线变成内层,使Return电流可能流入接地Plane,外层当作接地Plane包覆所有信号层。

改变被测基板结构主要理由是一般4层基板的Return路径,通常都设有可以通行电源Plane或是最短距离接地,因此在贯穿部位经常造成Return路径迂回问题,如果信号导线包覆接地Plane,如此一来大部份的Return路径会流入接地 Plane,进而解决Return路径迂回的困扰,被测基板B就是根据上述构想制成 ,因此Return路径在PCB整体减少30%,同时缩减信号图案与Return路径构成的电流Loop距离,进而达成EMI噪讯抑制的目的。图16是被测基板B的各层结构图。

图16是被测基板B的EMI噪讯测试结果,根据测试结果显示包含利用外层接地Plane的遮蔽(Field)结构,与回避Return路径迂回的设计确实具有抑制EMI噪讯的效果,不过实际上各式各样的电路基板要作如此的层结构变更,势必面临制作成本暴增的困扰,尤其是所有信号导线都将Return路径列入设计考虑的话,几乎无法作业,因此Layout阶段尽量避免高频信号导线透过Via作布线,同时必需在该信号导线邻近的层设置接地Plane,藉此防止Return路径迂回或是分断,接地Plane之间以复数Via连接,Return路径利用复数Via作理想性的归返。

c.设置多点Grand接地

Return电流流动时PCB内的接地Plane会产生电位差,该电位差往往是EMI噪讯的发生原因之一,而且可能会通过PCB形成所谓的二次噪讯,因此将接地Plane与金属板作多点连接(图18、图19),使PCB的侧面与中心位置得电位差均匀化,同时降低接地Plane本身的阻抗(Impedance)并抑制电压下降。

图20是多点接地后的EMI测试结果,由图可知低频领域EMI噪讯强度略为上升,不过200MHz以上时EMI噪讯受到抑制,这意味着多点接地的有效性获得证实。

d.铺设Shield

图21是在基板侧面铺设Shield的实际外观,具体方法是在基板侧面粘贴导电胶带,试图藉此抑制基板内层信号线、Via与电源Plane的噪讯,接着再与外层接地Plane连接,测试基板侧面的EMI噪讯遮蔽效果,图22是基板侧面铺设Shield的EMI测试结果,根据测试结果显示200MHz以下时EMI噪讯强度有下降趋势,甚至符合规范的Level,证实基板侧面铺设Shield确实可以抑制EMI噪讯。

实际制作PCB时在基板侧面铺设Shield,同样会面临成本上升的质疑,类似图23在基板侧面附近设置接地Plane与连续性贯穿Via的新结构,除了可是解决成本问题之外,还可以有效抑制基板侧面的EMI噪讯强度;图24是结合以上各种EMI噪讯对策的PCB测试结果。

结语

综合以上介绍的EMI噪讯对策,分别如下所示:

‧设置EMI噪讯对策用电容

‧回避Return路径迂回的基板层结构设计

‧设置多点Grand接地

‧基板侧面包覆Shield

实际上PCB得EMI噪讯对策会随着组件封装、导线、基板外形、层结构,与筐体限制出现极大差异,因此本文主要是探讨如何在PCB Layout阶段,充分应用EMI噪讯对策手法,根据一连串的对策中找出最符合制作成本,同时又可以满足规范要求的方法。

关键字:EMI  EMC设计  印刷电路 编辑:探路者 引用地址:EMI/EMC设计讲座:印刷电路板的EMI噪讯对策技巧

上一篇:光纤解决方案不易产生EMI 传能传感传信性能优异
下一篇:基于便携式设备可降低电磁干扰(EMl)新技术的应用

推荐阅读最新更新时间:2023-10-12 22:33

大功率开关电源的EMC测试分析及正确选择EMI滤波器
开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。 1 开关电源产生电磁干扰的机理 图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。这是因为开关电源所产生的干扰噪声所为。开关电源所产生的干扰噪声分为差模噪声和共模噪声。 图1
[电源管理]
大功率开关电源的<font color='red'>EMC</font>测试分析及正确选择<font color='red'>EMI</font>滤波器
一种新型应对汽车EMI问题解决方案
印刷电路板布局决定着所有电源的成败,决定着功能、电磁干扰(EMI)和受热时的表现。开关电源布局不是魔术,并不难,只不过在最初设计阶段,可能常常被 忽视。然而,因为功能和EMI要求都要必须满足,所以对电源功能稳定性有益的安排也常常有利于降低EMI辐射,那么晚做不如早做。还应该提到的是,从一开始就设计一个良好的布局不会增加任何费用,实际上还可以节省费用,因为无需EMI滤波器、机械屏蔽、花时间进行EMI测试和修改PC板。 此外,当为了实现均流和更大的输出功率而并联多个DC/DC开关模式稳压器时,潜在的干扰和噪声问题可能恶化。如果所有稳压器都以相似的频率工 作(开关),那么电路中多个稳压器产生的总能量就会集中在一个频率上。这种能量的存在可
[电源管理]
一种新型应对汽车<font color='red'>EMI</font>问题解决方案
在传感器,RFID,EMI/ESD等电子领域获得突破
石墨烯价格的下降和产品质量的提高将有效地刺激下游应用加快发展。展望2018年,石墨烯在电子、复合材料、储能这三大应用领域的拓展将加快;另外,石墨烯行业标准将进一步完善,对石墨烯行业的进一步发展起到积极的作用。 领先的新技术行业研究公司壹行研(Innova Research)在总结2017年初出版的《2017年全球石墨烯趋势》的基础上,最新公布了2018全球石墨烯九大趋势。这九大趋势分别对未来石墨烯制备、行业政策与相关投资、价格走势、以及石墨烯在先进电子、储能、复合材料等各大主要应用领域的发展趋势做了展望。 趋势一:石墨烯制备技术不断突破 石墨烯制备技术不断突破。美国能源部旗下的阿贡国家实验室(Argonne Natio
[电源管理]
混合集成电路的EMC设计
1引言 混合集成电路(Hybrid Integrated Circuit)是由半导体集成工艺与厚(薄)膜工艺结合而制成的集成电路。混合集成电路是在基片上用成膜方法制作厚膜或薄膜元件及其互连线,并在同一基片上将分立的半导体芯片、单片集成电路或微型元件混合组装,再外加封装而成。具有组装密度大、可靠性高、电性能好等特点。 随着电路板尺寸变小、布线密度加大以及工作频率的不断提高,电路中的电磁干扰现象也越来越突出,电磁兼容问题也就成为一个电子系统能否正常工作的关键。电路板的电磁兼容设计成为系统设计的关键。 2电磁兼容原理 电磁兼容是指电子设备和电源在一定的电磁干扰环境下正常可靠工作的能力,同时也是电子设备和电源限制自身产生电磁干扰和避免干扰
[电源管理]
混合集成电路的<font color='red'>EMC</font><font color='red'>设计</font>
EMI滤波器的设计原理
    摘要: EMI滤波器能有效抑制电网噪声,提高电子仪器、计算机和测控系统的抗干扰能力及可靠性。详细阐述了EMI滤波器的设计原理、典型应用及测试方法。     关键词: 电磁干扰 EMI滤波器 电源噪声 测试 插入损耗 随着电子设计、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。 电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高电子设备的抗干扰能力及
[电源管理]
调光时产生的EMI辐射及应对
调光时产生的EMI辐射及应对 SW引脚输出信号的EMI辐射是手机设计人员关注得比较多的问题,但大家往往发现即使已经花费很大力气,减小SW引脚输出信号的EMI辐射,但EMI问题依然存在。电感升压型背光驱动芯片在PWM调光时输出电压VOUT可能会产生很大的输出纹波。这也是一个EMI辐射源,但却容易被手机设计人员忽视。 图3是某款采用普通PWM调光方式的电感升压型背光驱动在PWM调光时的使能引脚(EN)和输出VOUT的波形。从图3中可以看到,用10KHz 50%占空比的PWM信号调光时,输出电压VOUT上的纹波高达4V.而且我们发现,调光频率越低,输出电压纹波越大。而在PCB设计中,输出VOUT需要从背光驱动模块接到屏的背光
[电源管理]
调光时产生的<font color='red'>EMI</font>辐射及应对
资深工程师告诉你如何使用示波器测试EMI辐射干扰
  引言   手机,蓝牙耳机,卫星广播,AM/FM广播,无线因特网,雷达,以及其它不计其数的潜在电磁干扰源发射出的电磁波混杂在真实世界中,为了确保汽车内的电子元器件仍旧稳健和有效,它们需要在一个受控环境中进行EMI干扰测试。   辐射抗扰室是一个完全密封的传导空间,是一个理想的EMI测试环境,因为它能够完全控制空间中产生的电磁场的频率,方向,波长。而且因为电磁场无法进入密闭的空间,在抗扰室测试的汽车部件在测试过程中能够接收精确且高度可控的电磁波。同时,电磁波也无法离开干扰室,用于测试的测量仪器以及在抗扰室外操控的工程师能够免于受到干扰室内产生的强电磁波的伤害。   现代汽车包含成百上千个电子电路以实现安全、娱
[测试测量]
资深工程师告诉你如何使用示波器测试<font color='red'>EMI</font>辐射干扰
汽车应用中的EMI兼容性测试
汽车应用对EMI事件尤其敏感,而在由中央电池、捆绑线束、各种感性负载、天线以及与汽车相关的外部干扰构成的嘈杂电气环境中,后者却是无法避免的。由于 安全气囊配置、巡航控制、刹车和悬架等多种关键功能控制都涉及到电子设备,因此必须保证EMI兼容性,绝不容许因外部干扰而出现误报或误触发。早 先,EMI兼容性测试是汽车应用中的最后一项测试。如果出现差错,设计人员就必须在仓促之间找出解决方案,而这往往涉及到改变电路板布局、额外添加滤波 器,甚至是更换器件。 这种不确定性极大提高了设计成本,并给工程师造成了很多麻烦。一直以来,汽车行业都在采取切实措施来改善EMI兼容性。由于设备必须符合EMI标准,汽车 OEM厂商现在要求半导体制造商(如AD
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved