对于开关电源的噪声,除了芯片本身,Layout的设计最为重要,记录一些相关的技巧。不少关于EMI的观念具有通用性。下面我们谈谈关于开关电源设计的一些关键问题。
AC和DC电流路径
开关电源在导通和关闭两种状态下的电流回路不尽相同,于是在部分支路上会出现阶跃电流(step current)(图1. C),这就是所谓需要关注的AC电流路径。
以PCB走线20nH/inch计算,典型buck converter的AC电流路径上电流变化大约是开关电源关闭转换时负载电流大小的1.2倍,是导通转换时负载电流的80%。高速场效应管的转换时间为30ns,Bipolar的转换时间为70ns;根据V=L*dI/dt,当转换时间(transition time)为30ns的1安培电流流过的一英寸走线将产生0.7V的电压,相同时间3安培两英寸走线就是4V!所以第一条准则便是:吝惜AC电流路径走线长度。
此外电源芯片的GND脚走线尽可能短以防止出现“地弹”(ground bounce),输入电容位置应靠近芯片。
元件要“扎堆”
最大的遗憾是不能把元件重叠起来,因此究竟先考虑哪个元件就十分重要了。
准则一:输入端的两个电容Cin和Cbypass。
输入端电容的作用是抑制输入电压的波动。输入电压的波动主要来自电源开关时的脉冲输入电流,Bulk电源的输出电流较平整(LC串联电路);Boost电源的情况正好相反,输入电容电流平整,脉冲电流进入输出电容。原文还提及了Buck-Boost或“flyback”(回扫),Cuk(据说这种是理想的DC-DC转换器,不存在所谓AC电流路径,输入输出全是平整电流,没玩过L)等电源,其输入输出电容上的电流状况取决于各自的拓扑结构。
在开关电源导通的瞬间,大部分脉冲电流来自Cbypass,其余部分主要来自Cin,只有那些缓慢变化的电流才来自DC输入电源。因此输入电容实际为芯片提供了脉冲电流源,如果输入电容的ESR和ESL太高会造成不必要的高频输入电压纹波,我们看到这句话千万不可理解为要无限加大输入电容,由开关频率(100K-260K)产生的自然输入电压纹波不在考虑范围,俺们考虑的是在转换瞬间频率为10MHz-30MHz噪声,特别的对于高速开关电源(这里的高速和开关的频率并无多大关系,而是指开关的转换时间,FET速度快于Bipolar),将一个0.1uF-0.47uF的贴片电容Cbypass尽可能靠近芯片,Bulk电容Cin个头大,可以距离稍远(一英寸)。
准则二:Cbypass电容和开关电源芯片亲密接触!
环流二极管(catch diode,有时也用MOS管)的位置也至关重要,它和芯片的连线是开关电源最为活跃的地区,处理不好的走线电感会在输出方波信号上叠加毛刺电压。
准则三:环流二极管紧贴IC,连接IC的SW pin以及GND pin形成一个紧凑的回流路径。如果已经遇到了毛刺电压,可以加一个RC缓冲器(RC snubber)吸收走线寄生电感引起的噪声,位置也必须靠近IC的开关脚和地脚,典型的R值为10ohm-100ohm,C值为470pF-2.2nF(电容值过大会造成不必要的功率损耗,1/2*C*V2*f)。加宽走线对减少寄生电感有用吗
基本没用,相反会造成EMI辐射
增加10倍走线宽度可以降低1/2的寄生电感,近似无效的投入!增加铜箔厚度也没用。在AC回路所包含的区域电场和磁场的交互作用会向外辐射噪声,假如包含的区域较大那就正好起到了“发射天线”的作用。准则四:减小AC电流回路面积,减小AC电压铜箔面积,可以降低EMI辐射。要降低寄生电感,最先考虑减小走线长度。
铺铜铺到何时休
1) 承载电流的能力
走线电阻在阻碍电流流过的时候会产生热量,给个经验准则五:
对于5安培以下电流,温度上升容限30°C
1盎司铜厚(1.4mil)每安培走线宽度至少增加12 mils
2盎司铜厚(2.8mil)每安培走线宽度至少增加7 mils
2) 走线电感
减小走线电感的最佳办法是增加完整的地层,电流不会无休止的朝着一个方向流下去,它一定会找到它最喜欢的返回路径。之前关于走线电感的估算都是建立在回流路径非常大,假设单根导线的情况。如果有一个完整的地层处于走线的下方,回流路径就是走线在地层上的“镜像”,平行的两根导体电流流向相反时磁场互相抵消,寄生电感也随之减小。
3)散热管理
没太多可以讨论的,记住FR4也是很好的导热材料,合理利用它和铜箔,还有导热钻孔。
地平面
保证其完整性,遇到大功率场合可能需要多层地。
信号线:反馈
反馈线是唯一需要注意的信号线,可能拾取噪声而使电源工作不正常。拾取噪声的前提条件是走线两端至少有一端是连到高阻抗的节点,如误差比较放大器的输入端(在开关电源芯片内部)。分辨清楚哪根走线才是可能拾取噪声的,分压电阻位置靠近IC。所以最后一条准则是:反馈信号走线远离噪声源;或者/同时走线长度短。
总结
理解开关电源工作原理以及各支路上电流电压的变化,找到AC电流路径和关键器件Cbypass和环流二极管,才算把问题弄清楚。
上一篇:工程师实例为您解析:如何有效的抑制开关电源的EMI
下一篇:技术小知识:行业人士教你如何购买小功率ups电源
推荐阅读最新更新时间:2023-10-12 22:35
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC