目前USB 已广泛应用于数据采集系统,现阶段使用较多的是USB 2.0 规范。随着测试测量要求的不断提高,USB 2.0 已逐渐难以满足要求。新的USB3.0 规范很好的解决了USB 2.0 中存在的一些局限,非常适用于现代测试测量系统。
1 USB 2.0 的性能与局限
通用串行总线USB(Universal Serial Bus)是目前应用极为广泛的一种系统总线,大量应用在测试测量领域。目前应用最广泛的是USB2.0 标准,具有最高480Mbps 的通信速率。但同时USB2.0 标准也存在着以下不足:
1) 半双工通信
USB2.0 采用半双工通信,同一时间只能有一个方向的数据传输,在需要双向高速数据传输的场合往往难以满足要求。
2) 需要主机调度
USB2.0 标准在传输调度上采用主从结构,需要计算机首先发起IN Token 或OUT Token,USB 设备才能进行数据传输,一次数据传输完成后,又必须等待下一个Token,大大制约了数据传输的实时性。
3) 通信速率相比于竞争对手不高
USB 的竞争对手有1394 和eSATA 等,较新的1394b 标准数据传输速度达到了800Mbps,几乎比USB2.0 HS 高一倍。而eSATA的数据传输速度更高。
2 USB 3.0 SS(SuperSpeed)标准简介
为了加强USB 的性能和竞争力,USB 联盟推出了新的USB 3.0SS(SuperSpeed)标准。该标准使用两条差分链路实现了全双工通讯,速率达到了5.0Gps,不但高于1394b 标准,与eSATA 相比也同样具有竞争力。
USB3.0 在2.0 的基础上新增加了2 对差分链路,专门用于传送SS 差分信号。主机侧接口的机械特性和USB 2.0 兼容,而设备侧使用了新的接口形式,以容纳新增的两对差分信号线。USB2.0 接口的B 型连接器可以插入USB 3.0 的设备端,此时设备工作于USB 2.0 模式下;但USB 3.0 的B 型连接器无法插入USB 2.0的设备端。
除此以外,USB 3.0 的总线供电能力达到1A,使其可以用于移动硬盘等耗电量较大的设备,而不必另外配备外接电源。
3 CYUSB3014 芯片介绍
CYUSB3014 是USB 业界的领头羊Cypress 公司出品的USB3.0 控制器,该款控制器集成了200MHz 的ARM9 控制器、512K 字节的RAM和USB 3.0物理层,具有可编程的100MHz GPIF II接口。
图1 是该芯片的逻辑框图。该芯片可用于数字摄像机、数据采集、测试测量设备等多个领域。
4 系统硬件设计
本系统中,使用了一片AD6644 作数据转换。这是AnalogDevice 公司生产的14 位高速ADC,最高采样速率达到40Msps.
整个系统的功能框图如图2 所示。
图中,传感器将外部信号变换为电信号;放大滤波部分将传感器输出的微弱电信号进行放大、滤波处理,以去除外部干扰;AD6644 在FPGA 的控制下对放大滤波后的信号进行采集和转换;FPGA 读取AD 输出,并按照CYUSB3014 的GPIF II 接口规范将该数据写入芯片内部的FIFO.此外,FPGA 还可以根据当前信号特性调整放大滤波电路参数,以获取更优的信噪比。
5 GPIF II 接口与FPGA 程序设计
在整个硬件系统中,FPGA 与CYUSB3014 之间的数据传输速度是决定整个系统性能的关键。Cypress 在GPIF 的基础上设计 了可编程GPIF-II 接口,该接口可工作于主控或从属方式,支持32 位数据总线,接口频率最高可达100MHz,有异步和同步两种时序。在本系统中,为了达到更高的数据传送效率,根据GPIF-II 接口时序,编写了相应的FPGA 程序,实现了在FPGA 和CYUSB3014之间的高速数据传输。实测结果表明,FPGA 和CYUSB3014 之间的数据传输速度最高达到了200Mbytes/s,完全满足本系统要求。下文是数据传输状态机的部分代码:
6 USB 固件设计
CYUSB3014 集成了一片ARM9 核心的处理器,完成USB 初始化、枚举、数据传输管理等工作。固件开发使用开源的gcc 编译器和Eclipse 集成开发环境,下面是用于管理数据传输的部分代码:
7 上位机驱动和软件设计
Cypress 提供了基于WDF 的驱动程序模块,WDF(WindowsDriver Foundation)是microsoft 推行的驱动开发框架,用来替代之前的WDM 框架。WDF 框架对WDM 进行了封装和继承,与WDM相比,WDF 框架的驱动开发更简单方便,尤其是简化了电源管理和PNP(Plug and play)方面的工作量。根据该系统的实际需要,对驱动代码进行了修改并编写了应用程序,能够稳定可靠地采集数据,表明该系统满足了预期的设计要求。
8 结语
本文的高速实时数据采集系统的设计方案,首先对传感器输出信号进行放大滤波处理,然后将其转换为数字信号。实践证明,USB 3.0 在USB 2.0 的基础上大大提高了数据传输速率,实时性也有很好的增强,能够满足高速实时数据采集的要求,在数据采集和测试测量领域必将大显身手。
上一篇:基于ANSYS的电压互感器磁路耦合分析
下一篇:基于GT4的聚类分析算法研究
推荐阅读最新更新时间:2023-10-12 22:36
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC