基于单片机的声光报警系统的设计方案

最新更新时间:2014-03-29来源: 21IC关键字:单片机  声光报警系统 手机看文章 扫描二维码
随时随地手机看文章

1 声光报警系统基本原理

超声波是指频率高于20000Hz 的机械波。为了实现超声波回波测距,必须通过超声波传感器产生和接收超声波。超声波传感器是利用压电效应和逆压电效应原理实现电能和超声波能之间的相互转化,即超声波发射器是通过逆压电效应将电能转换为超声波能,产生超声波;而超声波接收器是通过压电效应将超声波能转换为电能,接收超声波。若超声波发射器发出的超声波是以速度v( 单位:m/s) 在介质中传播,在有效防范区域内遇到被测物体超声波受到反射,被超声波接收器接收,传播经历的时间为t(单位:s),那么可以计算出入侵者与防范物体之间的距离s(单位:m),公式为:

系统结构框图如图1 所示,单片机按照晶振电路给出的时钟时序下接收来自超声波传感器输出的入侵者距离电信号,并将该距离数值在LCD 显示屏上实时显示, 同时控制由发光二级管和蜂鸣器组成的声光报警系统,使其以一定的频率闪光并发出警报声。

 

 

图1 系统结构框图

2 系统硬件设计

2.1 硬件电路

硬件电路的设计主要包括单片机系统及显示电路、超声波发射与接收电路、声光报警电路四部分。单片机采用STC89C52.采用12 MHz 高准确度的晶振,减小测量误差。超声波传感器采用压电式超声波换能器,设置单片机端口P2.7 输出超声波换能器所需的40 kHz 的方波信号,端口P3.2 监测超声波接收电路输出的返回信号。显示电路采用KXM12864M 显示屏。声光报警电路由发光二极管和蜂鸣器组成。

2.2 各主要模块的硬件

2.2.1 STC89C52 主控电路

 

 

图2 STC89C52 主控电路

2.2.2 超声波发射接收电路

压电式超声波换能器是通过压电晶体的谐振来实现超声波能和电能之间的转换,从而实现超声波的发射与接收的。将超声波发射器安装于J1 端,由单片机P27 端口以40kHz 的频率输出方波电信号,那么压电晶体就会发生逆压电效应以相同的频率进行振动,实现电能向超声波能的转化,产生超声波,如图3 所示。

 

 

图3 超声波发射电路

将超声波接收安装于J2 端,当压电晶体两端没有施加电信号,接收到超声波信号时,压电晶体就会发生压电效应并以同频率进行振动,实现超声波能向电能的转化,产生电信号,该电信号经LM358 放大后送入LM567 进行锁相环检波,那么单片机就可以检测到一个接地方波。如下图4所示。

 

 

图4 超声波接收电路

2.2.3 显示电路

显示电路采用KXM12864M 型LCD 显示屏。

2.2.4 声光报警电路

如图5所示,声报警电路选用压电式蜂鸣器。单片机输出低电平时,三极管导通,蜂鸣器报警。

 

 

图5 声报警电路

如图6所示,光报警电路,当单片机在对应端口输出低电平时,绿、黄、红三种颜色的发光二极管以不同频率闪烁。

 

 

图6 光报警电路

2.2.5 电源电路

如图7所示,电源VCC 由2 到4 节5 号电池组组成,C1、C2、C3、C4 起到稳压作用,按下开关SW1 电源接通,绿色发光二极管发光。

 

 

图7 电源电路

3 软件方案

3.1 主程序

主程序流程图如图8所示。程序先进行初始化工作之后,按下确认键后,单片机发射方波,整个系统进入布放状态,每次发射方波以后程序都会进入延时状态,判断是否接收到回波,也即是否发生了中断,若有回波产生,则程序进入中断服务程序,先关中断,测算并读取定时器时间t,由公式即可计算出入侵者的距离,并将该数值在LCD 屏上显示,由于报警程序内置三个报警状态,所以随着入侵者入侵距离的迫近,蜂鸣器的“嘀嘀”声和发光二极管的闪烁频率会逐渐加快。

 

 

图8 主程序流程图

3.2 功能显示

3.2.1 进入系统界面

按下电源开关,如图9所示,系统进入初始化状态,系统提示按下“确认键”(LCD 屏下方自左向右第一个按键),系统进入监测模式。

 

 

图9 系统进入待命阶段

按下“确认键”,如图10 所示,系统进入监测模式,系统开始布防,此时提示“物品安全”.

 

 

图10 系统进入监测模式

再次按下“确认键”,如图11 所示,系统进入监控范围设置模式,LCD 屏下方自左向右第二、三个按键可增大或减少监控区域的距离数值。

 

 

图11 进入监控范围设置模式

3.2.2 入侵者距离实时监测

(1)如图12 所示,有入侵者进入防范区域,报警系统启动,超声波传感器测出的距离为33 cm,绿色LED 灯和蜂鸣器以较慢的频率闪光和发声(此时警戒距离为30-40cm)。

 

 

图12 超声波测距范围在30-40 cm

(2)如图13 所示,有入侵者进入防范区域,报警系统启动,超声波传感器测出的距离为24 cm,黄色LED 灯和蜂鸣器以较快的频率闪光和发声(此时警戒距离为20-30cm)。

 

 

图13 超声波测距范围在20-30 cm

(3)如图14 所示,有入侵者进入防范区域,报警系统启动,超声波传感器测出的距离为11 cm,红色LED 灯和蜂鸣器以更快的频率闪光和发声(此时警戒距离为10-20cm)。

 

 

图14 超声波测距范围小于20cm

由上述可知,随着入侵者不断接近超声波传感器(或防范目标),声光报警装置的警报信号会在三种不同的频率下通过蜂鸣器的发声和不同颜色的发光二极管闪烁体现出来,从而有效提醒相关人员应加强戒备及时应对入侵;同时若入侵者发现警报信号,对其入侵行为也是一种威慑。

4 操作步骤

4.1 初始状态

按下自锁式开关,接通电源,LCD 屏显示系统最初始状态“系统介绍 超声波之监测系统 可监测三个可调区 按确认键进入系统”.

4.2 布防状态

根据LCD 屏显示的文字提示,按确认键,即LCD 屏下方自左向右第一个按键,会听到“嘀”的一声,系统进入监控模式,即布防状态。

4.3 设置状态

再次按确认键,进入监测范围设置模式,即按下LCD 屏下方自左向右第二个和第三个按键,可以调整三个监测区域的距离数值。

4.4 回到布防状态

监测范围调整完毕,按返回键,即按下LCD 屏下方自左向右第四个按键,系统重新进入布放状态,此时监测范围是调整后的范围。

4.5 撤防状态

再次按下自锁式开关,电源关闭,系统进入撤防状态。

5 创新点

5.1 非接触式报警

相比传统的接触式报警系统,该报警系统采用超声波测距非接触式报警方式,可以为防范对象在空间方面提供最大限度的安全保障。

5.2 三个可调监测区

该报警系统监测的是一个动态可调的防范区域,分为三个可调区,可以在最大有效距离内任意调整三个监测区域的距离数值,且数值可以精确到厘米。

5.3 装置体积小,易安装

装置体积约400cm3,占有的空间较小,安装方便、隐蔽,基本不受安装条件限制。

6 结语

基于单片机的声光报警系统的设计方案中硬件电路的设计主要由单片机系统及显示电路、超声波发射与接收电路、声光报警电路四部分,电路简易,成本价格为50 ~ 60 元人民币,低廉的价格,根据特殊的需求再稍加包装即可大规模推广应用。

关键字:单片机  声光报警系统 编辑:探路者 引用地址:基于单片机的声光报警系统的设计方案

上一篇:一种CAN总线与以太网互连系统的设计方案
下一篇:新型CPU及微处理器低压大电流可编程输出电源设计

推荐阅读最新更新时间:2023-10-12 22:37

松翰单片机外部中断
chip sn8f27e65 //{{SONIX_CODE_OPTION //完整源码下载: http://www.51hei.com/f/shwbzd.rar .Code_Option WDT_CLK Flosc/4 .Code_Option Reset_Pin P04 .Code_Option LVD LVD_Max ; 3.3V Reset .Code_Option Watch_Dog Disable ;关闭看门狗 .Code_Option Low_Fcpu Flosc/1 .Code_Option High_Clk IHRC_16M ; Internal 16M RC Osci
[单片机]
意法半导体(ST)推出先进无线微控制器
    意法半导体推出最新的可支持下一代智能电网标准的单片无线微控制器的样片。新款微控制器的设计目的是减少停电次数和二氧化碳排放量,同时还可支持未来的生活方式,包括插电式电动车充电。 STM32W微控制器是首批取得IEEE802.15.4认证的平台,可支持新的 ZigBee® Smart Energy Profile 2.0 (SEP 2.0)协议,该标准定义了智能电网环境,以实现一个更节能的世界。使用基于最新的互联网协议(IPv6)的无线通信协议栈 (ZigBeeIP),扩大了不同厂商之间以及他们的物理层芯片之间的互操作性。在其它的SEP 2.0先进功能方面,STM32W还可支持电费预付服务、负载响应和电力需求管理;微控制器
[工业控制]
STC单片机知识点
1.单片机内部三大资源:FLASH(程序存储空间也叫ROM),RAM(内存),SFR(特殊功能寄存器)。我们对单片机的操作基本都是对SFR的操作。 2.stc89c52 特点:8K FLASH,512B RAM,1个UART,2个定时器,8个中断源,P0口无上拉功能。 3.对FLASH的写操作,一般都是按页擦除,只有先把一页数据擦除后 才能写入,相当于先把数据清理后才能写。 4.对于一款新的单片机,要用sizeof,测试char,short,int等类型所占的空间大小。
[单片机]
基于MSP430的无线传感器网络设计
引言 传感测试技术正朝着多功能化、微型化、智能化、网络化、无线化的方向发展,自组织无线传感器网络(Self Organizing Wireless Sensor Network)作为新兴技术,是目前国外研究的热点,其在军事、环境、健康、家庭、商业、空间探索和灾难拯救等领域展现出广阔的应用前景,早在2003年美国自然科学基金委员会已经斥巨资来支持这方面的研究,并且出现了一些致力于无线传感器网络的公司。其中,Crossbow公司已推出了Mica系列传感器网络产品,国内很多大学现已经开展相关领域的研究,但大部分工作仍处在自组织无线网络协议性能仿真和硬件节点小规模实验设计阶段,本文就国防科技大学传感器教研室开展可应用于环境监测方面无线传
[网络通信]
经典常用的单片机c程序
//16进制 - 10进制互换程序 unsigned char d ; //用于显示的10位显示缓存 //======================================================== //16进制to10进制输出子程序:显示数据,起始位,结束位,有无小数点 //======================================================== void output(unsigned long dd,unsigned char s,unsigned char e,unsigned char DIP ) { unsigned long div;
[单片机]
​风口上的汽车半导体
汽车行业的这半年,是被“芯片荒”刷屏的半年。前有福特、通用因缺芯减产巨亏,后有特斯拉因芯片供应不足加州工厂暂时停产。2021年,全球车企无不笼罩在芯片短缺的阴影中。 汽车早已不仅仅是由钢铁铸就,更是由硅支撑。 这篇文章,我们挑选出了一些站在时代风口上的汽车半导体予以介绍。它们在眼下,以及不远的将来,会深刻影响汽车行业的命运。 一、MCU MCU(Microcontroller Unit)微控制单元,又名单片微型计算机,俗称单片机。MCU把CPU、内存(RAM、ROM)、计数器以及I/O等多种接口集成到一枚芯片上,形成了一个只有芯片大小,但能完成特定任务的计算控制系统。 MCU的构成形态相对简单,往往只能够胜任某
[汽车电子]
​风口上的汽车半导体
在LPC2131微控制器外部实现CAN总线通信设计
Philips公司的LPC213l是基于ARM7TDMI-S的高性能32位RISC微控制器。它具有ARM处理器的所有优点——低功耗、高性能和较为丰富的片上资源,但LPC2131内部没有集成CAN控制器,而无法利用CAN总线来进行通信。为了使得LPC2131能够利用CAN总线进行通信,可以通过外部扩展来实现其功能。目前,比较普通的方法是在LPC2131的外部采用CAN控制器设计CAN总线接口。LPC2131与CAN控制器的接口电路如图1所示。 这种方法中,LPC2131是通过GPIO口与CAN控制器SJA1000相连实现数据交互的。LPC2131通过寄存器IOSET/IOCLR来设定I/O口的高/低状态,虽然可以同时置位/拉低
[单片机]
在LPC2131<font color='red'>微控制器</font>外部实现CAN总线通信设计
盛群半导体新一代八位MCU用于VFD显示控制
HT49RV9、HT49RV7、HT49RV5及HT49RV3是盛群半导体(Holtek)新一代八位AD with VFD type OTP MCU(VFD: Vacuum Fluorescent Display,为真空萤光显示管,已被广泛的应用于汽车音响及家电用品上的显示屏)。客户可依照不同需求选择该系列16K、8K、4K、2K OTP ROM程序内存,并分别配备768 byte、384 byte、192 byte及96 byte Data RAM。 全系列产品均有两组16-bit Timer、SIO串行输入/输出作为与其它系统之沟通桥梁、Buzzer/PFD则可用于声音输出、RMT则可用于IR接收译码使用。另外,也支持R
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved