基于软开关技术的能量恢复电路及其检测

最新更新时间:2014-04-06来源: 互联网关键字:功率因数校正电路  能效  软开关 手机看文章 扫描二维码
随时随地手机看文章

   尽可能降低功耗、在节省成本的前提下提高功率密度,是现代高效开关电源所面对的重要挑战。开关电源的设计目标是降低功率的通态损耗和开关损耗[1]。
    不影响功率密度和成本并且能够优化功率通态损耗的目的很难实现,因为这需要很多材料和元件,需要各种晶片,或增大铜线面积。与通态损耗不同,降低功率开关损耗而不大幅提高电源成本比较容易做到。本文重点论述的电路采用软开关法,能效比优于碳化硅二极管。
1 能量恢复电路
    该电路参照软开关[2]要求而设计,如图1所示。为了恢复线圈L贮存的能量,在升压线圈LB附近新增加了两个二极管 D1和D2,另外还有两个辅助线圈NS1和NS2。

1.1 概念描述
    在晶体管TR导通时,线圈NS1可以恢复升压二极管DB上流过的反向恢复电流IRM[3]。交流输入电压还调制升压二极管电流IDB及其相关的反向恢复电流IRM。该调制过程让流经线圈L的反向恢复电流IRM被线圈NS1重置。当晶体管关断时,辅助线圈NS2把小线圈L的额外电流注入到输出电容。流经小线圈L的电流通过二极管D2消失在体电容内。当dI/dt斜率较低时,如在开关变换器断续情况下,附加线圈NS1和NS2将影响到关断二极管D1和D2;二极管反向恢复电流IRM也不会影响电路特性。
1.2 相位时序描述
    变压比m1和m2是线圈NS1和NS2分别与NP的比值。
    在t0前,恢复电路的特性与传统升压转换器的特性相同。
    在t0时,功率晶体管导通,DB的电流等于I0。在t0+时,电流软开关启动,无开关损耗。在t0后,流经DB的电流线性降至-IRM。
    在t1+时,升压二极管DB关断。由于反射电压VNS1低,为了消除二极管D1上的反向恢复电流产生的不良效应,需要保持dI/dt_D1为低斜率。但是,在这个相位期间,升压二极管DB被施加了一个高反向电压。这个特性需要这种应用加上一个二极管,以使得二极管反向恢复电流IRM与击穿电压保持精确平衡。
    在t2时,二极管D1上的电流为0 A,恢复电路变成了一个比较传统的功率升压变换器。
    在t3时,功率晶体管关断。与此同时,主线圈上的电压极性也发生变化,直到DB二极管重新导通。
    在t4时,二极管D2上的电流达到0 A,恢复电路又变成一个传统的功率升压变换器,仅有升压二极管DB导通。
    电路需用到一个击穿电压高于600 V的特殊二极管。此外,还需优化这个二极管的反向恢复电流,防止功率晶体管TR在t1~t2相序期间内受到较高的电流的冲击。
1.3 计算m2和m1变压比
    为了在t1~t2和t3~t4相序期间能够符合断续模式,图2显示的时间td1和td2应为正值。根据连续导通工作模式CCM(Continuous Conduction Mode)功率因数校正的原理和tD1_ON、tD2_ON的结果,可以确定变压比m1和m2。

其中,PIN是功率因数校正电路(PFC)[4]的输入功率,FS是开关频率;VmainsRMSmax是电路电压最大值;IRMmax是在导通电流变化率和最高工作结温条件下的反向恢复电流最大值。
2 450 W功率因数校正电路的电能恢复电路
    为展示恢复电路的优点,制作了一个VmainsRMS为90~260 V的通用系列450 W功率因数校正器,该系列产品采用硬开关模式和一个标准均流式 PWM控制器。从导通情况、能效比较和热量测量3个方面将电能恢复电路和碳化硅肖特基二极管进行了比较。
2.1 恢复电路设计
    在测量电能恢复电路时使用了特定的二极管,图1中DB采用STTH8BC065DI,D2采用STTH8BC060D,D1采用STTH5BCF060。
2.2 恢复电路的典型波形
    图3所示是200 kHz的功率因数校正电路的典型电能恢复电路波形。每次功率晶体管导通时,就会发生一次电流软开关操作。这条曲线突出表明D1、D2两个二极管总是处于断续状态;D1恢复DB的IRM电流;而D2则通过功率因数校正电路中的体电容发送线圈L储存的电流。在t0~t1和t4~t5相序期间,一旦D2关断,功率晶体管的漏极电压将立即降低,同时消除了关断损耗。

2.3 能效比较
    在两个相同的Vmains电压和140 kHz相同开关频率的条件下对电能恢复电路和SiC肖特基二极管进行了能效比较,如图4和图5所示。当电源电压为230 VRMS时,在加全负载的条件下,恢复电路比8 A SiC二极管省电约2.25 W,在负载100 W时省电约1 W。

 

    在加低负载的条件下,由于恢复电路关断损耗比SiC二极管低,NS2 产生的反射电压仍然可以提高电能恢复电路的能效。但若功率因数校正电路工作于断续模式(<100 W),电能恢复电路将与SiC二极管的能耗相同,如图4所示。
    在电压为90 VRMS时,软开关方法的优势与功率晶体管体电容COSS放电节省的能量加在一起进一步突出了电能恢复电路的优点。在输出功率达到450 W时,电能恢复电路相比较SiC二极管省电约5.4 W;在低负载的情况下,由于没有关断损耗,电能恢复电路比SiC二极管省电约1.7%。加强了软开关法电能恢复电路和COSS放电降低能耗的优势,尤其是在低负载的条件下这种优势将更为明显。
2.4 热测量
    电流的软开关法可以降低功率晶体管的功率损耗,图6所示是在一个功率因数校正电路中,电能恢复电路的解决方案与SiC二极管在功率晶体管上产生的温度差(18 ℃)。如果功率晶体管的PN结温度相同,电能恢复电路应该可以进一步减小散热器的体积。这样,节省的空间就抵消了电能恢复电路的微型线圈L所占的空间。并且,恢复电路拥有了与SiC二极管相同的功率密度。

    虽然采用了热量优化技术,但如果功率晶体管的RDS(on)致使PN结温度上升到90 ℃时,采用电能恢复电路的能效就会有所降低,不过还是高于SiC二极管。因此,在图5和图6所示的90 VRMS能效比较中,必须从节省的电能Pout×[1/(SiC_efficiency)-1/(BC2_efficiency)]=5.4 W中减去0.75 W。总而言之,电能恢复电路的节能效果和功率密度均优于SiC二极管。
    电能恢复电路使用电流软开关法,可以通过一个特有的无损恢复电路帮助电源设计人员实现提高能效的目标。使用专用的二极管可以提高连续导通工作模式下功率因数校正电路的性能。
参考文献
[1] 罗萍,李强,熊富贵,等.新型开关电源的关键技术[J].微电子学,2005,35(1):63-66.
[2] 齐群,张波.软开关PWM变换器发展综述[J].电路与系统学报,2000(3):50-56.
[3] 李思奇,郭犇,蒋晓华,等.动态死区抑制MOSFET反向恢复电流的研究[J].电力电子技术,2010,44(7):91-93.
[4] 林维明,汪晶慧,黄俊来,等.一种高效倍压升压型软开关功率因数校正电路[J].中国电机工程学报,2008(36):62-67.

关键字:功率因数校正电路  能效  软开关 编辑:探路者 引用地址:基于软开关技术的能量恢复电路及其检测

上一篇:基于SG3525的步进电机程控电源设计
下一篇:电缆故障源有效冲击放电信号测量电路设计

推荐阅读最新更新时间:2023-10-12 22:37

AC/DC电源的性能和国际标准
随着国际电源能效标准的限制日趋严格,电源控制器的性价比已逼近它们的极限。既要满足这些新标准的要求,同时又要提升性能和降低成本,这种挑战已迫使市场转向一些新的颠覆性技术。新的设计技术现在能够让AC/DC转换器在不牺牲其性能(尤其是负载瞬态响应时间)的情况下,满足严格的DC能效要求。本文将探讨这些新的电源能效标准对电源控制器提出的要求,在维持输出质量、以及不增加成本和复杂性的情况下提升性能的最新设计技术。 国际电源能效标准 美国能源部(DoE)于2007年颁布的外部电源能效标准对空载功耗以及负载为额定负载电流25%至100%时的平均能效提出了一整套严格的要求。欧盟和全球其它国家也颁布了类似的标准,但DoE的标准是最严格的强
[电源管理]
AC/DC电源的性能和国际<font color='red'>能</font><font color='red'>效</font>标准
平板电视等级标准发布 12月1日起实施
  7月29日消息,腾讯科技从国家广播电视产品质量监督检验中心了解到,《平板电视能效限定值及能效等级》标准在经过2009年6月完成审定形成报批稿,及2010年1月5日在WTO网站公示结束后。已于2010年6月30日发布,并于12月1日起正式实施。 据国家广播电视产品质量监督检验中心整机性能实验室主任吴蔚华介绍,平板电视能效等级分为3级,其中1级能效最高。一级为节能产品的目标值,原则上应定在当前市场同类产品的最高水平;二级为节能产品评价等级,指标设定应高于产品市场平均水平;三级为市场准入等级,指标设定主要用于淘汰市场上高耗能产品。 另据介绍,7月至11月为能效标准实施前的缓冲期,目前已经开始使用这套标准做
[家用电子]
高性能软开关功率因数校正电路的设计
摘要:介绍了功率因数校正控制电路和功率主变换电路的原理及如何选择元器件及其参数。 关键词:功率因数校正;电磁干扰;升压变换;软开关 引言 随着计算机等一些通信设备的日益普及,用户对电源的需求也在不断增长,要求电源厂商能生产更高效、更优质的绿色电源,以减小电能消耗,减轻电网负担。这就必须对电源产品如UPS,高频开关整流电源等的输入电路进行有源功率因数校正,以最大限度减少谐波电流。实际测量计算机等整流性负载的PF=0.7时,输入电流的总谐波失真度近80%,即无功电流是有功电流的80%。不间断电源国标(GB7286—87)规定,输入总相对谐波含量≤10%,整流器产品国家行业标准规定输入功率因数>0.9,所以,如何设计优秀的PFC电
[电源管理]
详解半桥软开关逆变式焊机的电路原理
这是一种新型的 半桥 软开关 逆变 技术,可使逆变开关器件在软开通软关断的条件下工作,其开关电压应力和电流应力都大为减小,开关损耗也大为减小,器件发热大为减小,同时电磁干扰幅度也大为减小,由于采用半桥,器件成本也相应降低了。 为达到以上目的, “半桥软开关逆变式焊机”包括按设备的电功率流向而顺序连接的:输入滤波电路、一次侧整流滤波电路、半桥软开关逆变电路、隔离变压器和二次侧整流滤波电路以及主控制板电路,主控制板电路既和二次整流滤波电路联通又和半桥软开关逆变电路联通。 如图一所示: “半桥软开关逆变式焊机”包括按设备的电功率流向而顺序连接的:输入滤波电路1、一次侧整流滤波电路2、半桥软开关逆变电路3、隔离变压器4和二次侧整流滤波电
[电源管理]
详解半桥<font color='red'>软开关</font>逆变式焊机的<font color='red'>电路</font>原理
软开关PFC电路的倍频感应电源的设计仿真
0 引言   Boost电路应用到功率因数校正方面已经较为成熟,对于几百瓦小功率的功率因数校正,常规的电路是可以实现的。但是对于大功率诸如感应加热电源,还存在很多的实际问题。为了解决开关器件由于二极管反向恢复时产生的冲击电流而易损坏的情况,减少开关器件在高频下的开关损耗。 本文采用一种无源无损缓冲电路取代传统的LC滤波电路。在分析了软开关电路的工作原理以及逆变模块的分时-移相功率控制策略后,应用Matlab软件进行了仿真,并通过实验结果验证了理论分析的正确性。    1 电源系统整体拓扑   如图1所示,该主电路拓扑主要由整流、软开关Boost功率因数校正、逆变、负载匹配几个环节组成。   
[电源管理]
<font color='red'>软开关</font>PFC<font color='red'>电路</font>的倍频感应电源的设计仿真
全球经济化条件下lGBT软开关应用与开发
一、IGBT溉述 正常IGBT的工作频率在10—20kHz,其开关速度比GTO、IGCT快得多。在交流电动机变频调速中,它是较好的选择。它在中小容量装置中淘汰功率双极晶体管(GTR)已成定论。IEGT在高电压领域中保持快速开关特性。在20世纪末,采用特殊结构和特殊少子寿命控制(如质子注入加特殊退火工艺规范)的IGBT,在600—1200V电压水平下,使工作频率达到150kHz(硬开关)和300kHz(软开关),被称为霹雳型IGBT。它们将在开关电源中与功率MOSFET竞争,以其导通压降小,电流密度大,电压等级高,成本低等优点占有优势。今后十年的开关电源,也许这种IGBT的市场份额将会扩大。 二、零电压IGBT软开关
[电源管理]
高性能软开关PFC电路的设计步骤
0 引言 随着计算机等一些通信设备的日益普及,用户对 电源 的需求也在不断增长,要求电源厂商能生产更高效、更优质的绿色电源,以减小电能消耗,减轻电网负担。这就必须对电源产品如UPS,高频开关整流电源等的输入电路进行有源功率因数校正,以最大限度减少谐波 电流 。实际测量计算机等整流性负载的PF=0.7时,输入电流的总谐波失真度近80%,即无功电流是有功电流的80%。不间断电源国标(GB7286—87)规定,输入总相对谐波含量≤10%,整流器产品国家行业标准规定输入功率因数 0.9,所以,如何设计优秀的PFC电路是很关键的技术,正确的PFC电路设计技术主要由以下几个部分组成:控制电路,功率主电路,元器件选择及其参数设计
[电源管理]
高性能<font color='red'>软开关</font>PFC<font color='red'>电路</font>的设计步骤
揭秘如何提高绿光LED问题
  众所都知,绿光LED的性能水平达不到同等红光和蓝光led。但可以通过降低电流密度、使用一个更大的芯片以及优化生长条件来减少黑点,能够尽可能缩小在100mA驱动电流条件下,达到190lm/W的LED之间的距离。欧司朗的AndreasL?ffler和MichaelBinder如是说。   LED灯泡最大的诟病仅次于价格的是不理想的颜色。这个缺点是由制作白光LED的过程中产生的:GaN基蓝光芯片激发黄色荧光粉,混合这两种颜色产生白光。用这种方法,可见光谱的红光区域并没有对光输出有多大贡献。   白光LED照明产品制作的更高级方法—也是固态投影显示的一种方法—即以红、绿、蓝为材质的LED,混合而产生白光。这种方法的优点是不会局限于更高
[电源管理]
揭秘如何提高绿光LED<font color='red'>能</font><font color='red'>效</font>问题
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved