峰值电流控制模式的DC-DC变换器因其动态响应快、输出电压稳定,在开关电源中广泛应用。当其占空比小于50%时,系统能够稳定工作;但是当占空比大于50%时,系统就不能稳定工作了。基于此,利用斜坡补偿技术,提出一种基于BOOST型DC-DC变换器的斜坡补偿电路,用以解决系统不稳定的问题。该电路结构简单,实现方便,提高了系统的稳定性。
1 斜坡补偿结构及原理
1.1 BOOST型DC-DC变换器
BOOST型变换器也被称为升压型变换器[1-2],其传统结构如图1所示。
参考文献[3]提出,当开关管M导通时,电感L上有电流流过并存储电能,二极管VD截止,电容C给负载提供电能。当开关M截止时,电感L上产生相反的电动势,此时二极管VD导通,电感L通过二极管VD向负载R释放电能,并为电容充电。
1.2 整体电路环路结构
参考文献[4]指出,峰值电流控制模式的DC-DC变换器具有动态响应快、输出电压稳定等许多优点。因此采用峰值电流控制模式的DC-DC变换器[5],如图2所示。
2 斜坡补偿电路的实现
2.1 电路原理分析
本设计的斜坡补偿电路如图4所示。电路正常工作时,基准电流信号I_SLOPE通过电流镜M1、M2、M3、M7镜像到M7的漏极,因此M7漏极电流值为I1不变[9];误差放大器产生的误差放大信号VE通过一个源跟随器(由放大器和MOS管M6组成)将电压跟随到电阻R1上,图4中R和C为放大器的补偿。此时,R1上的电压不变,因此流过R1上的电流I2也不变。SLOPE为OSC模块产生的锯齿波信号,该信号通过R2产生一个锯齿波电流信号I3,电流I3通过电流镜M9、M8镜像到M8的漏极电流I4。由于电流I1不变,因此电流I4的改变导致M6漏极电流I5的改变,由此产生一个锯齿波电流信号,该电流通过电流镜M5、M11镜像为电流I6,再通过MOS管M12输出,最终产生一个斜坡电压VC用于斜坡补偿。
图4中,TRIM_SLOPE用来调节电流镜M8、M9的比例系数,最终调节输出斜坡电压的幅值。当TRIM_SLOPE为低时,M14导通,M13并联在M5两端,电流镜M5、M11比例系数为2:1;当TRIM_SLOPE为高时,M14截止,电流镜M5、M11比例系数为1:1,实现微调斜坡电压的功能。
图5是上图斜坡补偿电路中运算放大器的内部电路,该电路采用折叠共源共栅型运放完成相应功能。
本文针对现有补偿电路结构复杂、补偿效果差的缺陷,设计了一种基于BOOST型DC/DC变换器的斜坡补偿电路。该电路具有电路结构简单、补偿效果稳定的特点。利用VIS标准0.4 μm BCD工艺进行仿真,结果表明,通过该斜坡补偿电路可以满足系统稳定输出的要求。该电路可用于BOOST型DC-DC的LED驱动电路中,具有较高的实用价值。
参考文献
[1] ZHANG Z,THOMSEN O C,ANDERSEN M A E.Softswitched dual-input DC-DC converter combining a boost half-bridge cell and a voltage-fed full-bridge cell[J].IEEE Transactions on Power Electronics,2013,28(11):4897-4902.
[2] 张彦科,鲍嘉明.一种基于升压DC-DC变化器的白光LED驱动芯片[J].微电子学,2011,41(4):525-527.
[3] 王松林,田锦明,来新泉,等.高效同相的降压-升压DC/DC转换器的控制方法[J].仪表技术与传感器,2006,7(20):54-60.
[4] 罗鹏.采用峰值电流模PWM控制的BOOST型DC-DC转换器的设计[D].西安:西安电子科技大学,2010.
[5] 梁鼎,张小平.新型Buck-Boost矩阵变换器的自抗扰控制策略[J].仪表技术与传感器,2013,4(4):77-80.
[6] KONDRATH N,KAZIMIERCZUK M K.Control current and relative stability of peak current-mode controlled pulse width modulated dc-dc converters without slope compensation[J].IET Power Electronics,2010,3(6):936-946.
[7] Liu Jiaying,Wu Xiaobo.A novel piecewise linear slope compensation circuit in peak current mode control[C].IEEE Conference on Electron Devices and Solid-State Circuits,2007.
[8] KONDRATH N,KAZIMIERCZUK M K.Loop gain and margins of stability of inner-current loop of peak currentmode-controlled PWM dc-dc converters in continuousconduction mode[J].IET Power Electronics,2011,4(6):701-707.
[9] 李帅,张志勇,赵武,等.一种用于Buck DC-DC转换器的自适应斜坡补偿电路[J].电子技术应用,2010,36(2):51-57.
上一篇:井下小型化微波输能整流电路的研究与设计
下一篇:如何最大限度减少线缆设计中的串扰
推荐阅读最新更新时间:2023-10-12 22:37
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC