基于实验系统采用电路可动态重组的设计方案

最新更新时间:2014-04-10来源: 21IC关键字:实验系统  采用电路  可动态重组 手机看文章 扫描二维码
随时随地手机看文章

“ 数字电路与逻辑设计”、“ 可编程逻辑器件与应用”、“单片机原理与应用”是电子类相关专业的重要专业课程,在电工电子教学中占有非常重要的地位,也是现代EDA 技术的重要组成部分。一方面,三门课程都具有很强的实践应用性,学生学习的重点在于通过实践,真正掌握软硬件的有机结合和实际系统的应用能力[1].另一方面,三门课程联系紧密,其中“数字电路与逻辑设计”课程是“可编程逻辑器件与应用”课程的基础,且随着现代电子技术的发展,传统的采用分立元件完成数字电路实验的方法也逐渐被可编程逻辑器件所替代。同时,在实际的工程应用中,经常会需要利用74系列器件和可编程逻辑器件对单片机外围电路进行扩展。因此,三门课程在电子系统设计中不可分割。

虽然目前市场上有各式各样的数字电路、EDA 或单片机的教学设备,但大多是独立的、“单板式”的设计模式,即使有少量综合性实验平台,也只是简单的把几门课程的实验资源集成到一个实验平台,然后根据需要采用导线连接,和独立的实验平台之间并没有本质的区别。此外,不同实验平台中的某些功能模块的硬件电路是相同的;但在不同的实验设备上,相同的模块并不能共享,存在资源的浪费。最后,一体化的设计难于进行功能的扩展,不利于学生进行创新项目的设计[2?3].在这种情况下,从培养学生的创新精神和提高综合利用所学知识解决工程实际问题的能力出发,迫切需要一种既能完成每门课程的独立实验,又能完成综合性设计实验的实验平台。

本实验系统针对上述问题,采用电路动态重组的方式,提供0~7共8个模式,在一套实验系统上既含有数字电路常用逻辑芯片的功能,也含有可编程逻辑器件、单片机的硬件资源,可同时满足三门课程的教学需要。

实验系统还预留扩展接口,可以将设计的扩展电路连接到实验系统,有利于训练学生的创新能力。

1 综合实验系统设计方案

综合实验系统采用电路可动态重组的设计方案,其系统结构框图如图1所示。

系统分为:主控电路模块、单片机模块、PLD 模块、人机交互模块、显示模块、矩阵按键模块以及预留扩展接口模块。

主控电路模块是完成电路动态配置的核心,能够实现所有资源之间的任意连接。

人机交互模块通过LCD12864 显示器和按键提供友好的配置界面,实现模式的选择、设置信号的参数以及观察测量结果等功能。

显示模块、矩阵按键模块又可统称为基本外设模块,提供基本的输入输出资源。综合实验系统还配备信号发生和检测功能,能够产生频率可调的方波信号,并能测量输入信号的频率和电压。

 

 

1.1 主控电路模块

主控电路模块采用Altera 公司的MAX Ⅱ 系列EPM570T144C5N 作为控制芯片,MAXⅡ系列器件既具有FPGA 的查找表的体系结构和性能,又具有CPLD 存储数据非易失性、易于编程和瞬时接通的功能,应用更加灵活、方便。该系列器件由于编程时不需要外部存储器件这一在用户看来更容易识别的特性,所以被Altera公司归入CPLD.主控电路实现电路的动态重组,可按需配置成不同的连接,实现综合实验系统的不同模式,连接示意如图2所示。单片机模块、PLD模块、预留扩展接口模块、基本外设模块等通过标准I/O口直接和主控电路中的CPLD 器件EPM570T144C5N 连接(实线双向箭头所示)。由于器件内部具有丰富的互连线,只需简单的硬件编程即可实现不同I/O接口之间的数据相互转发,即实现片上数据路由的功能。因此,通过硬件描述语言HDL(Hardware Description Language)对该CPLD进行编程,即可完成其他功能模块之间的数据转发,实现这些模块之间的间接连接(虚心双向箭头所示)。对用户而言,用户只需要通过人机交互模块进行配置控制,选择需要的模式,就能调用预先存储好的不同连接配置信息,自动实现实验系统不同模块之间的动态连接。具体说来,有三种形式的连接:

(1)把基本外设模块、预留扩展接口模块、信号产生和测量连接到PLD模块,实现独立可编程逻辑器件实验平台的功能。同时可编程逻辑器件还可模拟74系列数字芯片,实现独立的数字电路与逻辑设计实验平台的功能。

(2)把基本外设模块、预留扩展接口模块、信号产生和测量连接到单片机模块,实现独立单片机实验平台的功能。

(3)把单片机模块与PLD 模块进行连接,再通过PLD 模块连接基本外设模块、预留扩展接口模块等,实现综合实验平台的功能。

对用户来说,这些模块之间是直接连接的,用户只能接触到基于动态重组电路之上的各个功能模块。

 

 

主控电路EPM570T144C5 的具体连接电路如图3所示。

1.2 单片机模块

单片机模块目前选用器件为SST89E516RD,是SST公司生产的一款基于8051内核的8位单片机,最大特点是具有在线下载和在线调试功能。其管脚兼容AT89C51,时钟频率0~40 MHz,集成1 KB 片内RAM,64 KB+8 KB 的FLASH E2PROM.此外,单片机模块还配置温度传感器DS18B20,8 KB 串行E2PROMAT24C08.单片机器件通过标准接插件连接到EPM570T144C5N,可根据需要随时更换。

1.3 PLD模块该模块可根据需要更换不同的EDA核心板。本实验系统采用自行设计的EDA核心板,选用Altera公司的CycloneⅢ系列EP3C10E144C8,含有10 320个逻辑单元(LE)、46 个M9K 模块、423Mbit 的RAM、以及23 个18×18硬件乘法器、2个PLL、10个Gclks.该EDA核心板还提供8个独立按键,1个40 MHz的有源晶振。

 

 

1.4 其他外围硬件资源

在人机交互模块、显示模块、以及矩阵按键模块还提供一些常用的硬件资源,包括:10位高精度A/D转换器ADS7822、12位高精度D/A转换器TLC5615、8个发光二极管、8个共阴7段数码管、字符液晶1602、带字库点阵液晶12864、蜂鸣器、4×4矩阵按键等。

1.5 扩展接口

可通过P3、P4两个40针双排插座实现与其他电路的连接,灵活支撑各类设计项目,有利于学生综合、创新能力的训练。

图4所示为扩展接口与核心电路EPM570T144C5N的连接示意。

2 实验系统模式

综合实验系统采用模式化结构,有0~7 共8 个模式,可通过人机交互模块中的按键S0~S4进行选择。其中模式0~4是单片机模式,模式5~7是可编程逻辑器件模式。不同模式下,电路的结构以及外围硬件资源均有不同。

2.1 单片机模式

图5 所示为模式0 的电路结构。在模式0 下,发光二极管连接在单片机的P0口,如果P0口相应位是逻辑“1”,则能够点亮对应的发光二极管。需要注意的是,P0口作为普通I/O口使用,需要接上拉电阻,图5仅为电路结构示意,实际电路中连接有5.1 kΩ。在模式0下,4×4矩阵按键不再作为矩阵按键使用,而是取矩阵按键中的K0~K7 作为独立按键连接到单片机的P2 口。该模式下,连接有DS18B20,AT24C08和ADS7822等硬件资源。

 

 

 

图6 所示为模式1 的电路结构。在模式1 下,矩阵按键中的K0~K3作为独立按键,连接到单片机的P2.0~P2.3 口。模式1 相对于模式0,增加了LCD1602、TLC5615 以及蜂鸣器。LCD1602 的数据线连接到单片机的P0 口,控制信号RS、RW 和E 分别连接到P2.5 口,P2.6口,P2.7口。为了简化编程,在模式1下,LCD1602被禁止读“忙”.这意味着,如果选用模式1对1602进行操作时,只能通过延时来实现控制。TLC5615的控制信号nCS和SCK分别连接到P3.2口和P3.6口,而串行数据则通过P3.7口进行传输。

模式2与模式1基本一致,区别在于将LCD1602换为12864.同样,模式2 也不允许对12864 进行读“忙”

操作。

模式3是单片机I/O扩展模式,通过P0口和P2口进行I/O扩展;其中P0口用作数据通道,P2口用作控制通道。如:P2.0口用于使能发光二极管,P2.1口用于使能数码管的段选信号,P2.2 口用于使能数码管的位选信号,P2.3和P2.4控制矩阵按键,P2.5和P2.6控制液晶显示器。在模式3下,单片机可以使用实验系统上的所有外围硬件资源。

 

 

模式4是单片机总线模式,所有外围硬件资源通过总线与单片机相连,外围硬件资源地址为0×0400~0×0600.

2.2 可编程逻辑器件模式

图7所示为模式5电路结构,即可编程逻辑器件模式。在模式5下,连接有发光二极管、数码管、4×4矩阵按键、TLC5615 以及蜂鸣器。SW0~SW7 是EDA 核心板上的8 个独立按键,按下为逻辑“0”.其中SW5 连接在EP3C10E144C8 芯片的多功能管脚nCEO 上,需要通过软件将该管脚设置为普通I/O 脚,否则按键SW5 不能使用。提供三个时钟信号,clk0 连接EDA 核心板上的40 MHz 有源晶振,clk1 和clk2 可在人机交互模块进行选择。

模式6 与模式5 基本一致,所不同的是模式6 没有连接数码管,而是连接LCD1602.同样,在模式6 下,1602不允许“读忙”操作。模式7将模式6的1602换为12864,其他连接完全相同。

3 实验系统应用

综合实验系统制为实验箱的形式,如图8所示。目前已在我校承担了“单片机原理与应用”和“可编程逻辑器件与应用”两门课程的相关实验。

 

 

 

 

(1)“单片机原理与应用”相关实验

包括流水灯的实现、数码管显示设计、接口技术--按键、串口通信、A/D转换、D/A转换、数字电压表的设计、数控信号发生器的设计、数字温度计的设计、彩灯控制系统的设计、电子万年历的设计等[4].

(2)“可编程逻辑器件原理与应用”相关实验

包括:计数器的设计、LPM模块的应用、数控分频器的设计、数码管显示设计、数字频率计的设计、硬件电子琴的设计、矩阵键盘扫描电路的设计、直接数字频率合成器(DDS)的设计、D/A转化控制、字符型LCD显示、数字调制模块的设计、循环冗余校验模块的设计等[5].

4 结语

设计良好的实验系统能够为学生学习电子技术提供优越的实验环境[6].该综合实验系统采用模式化结构、电路动态重组、预留扩展接口,较好地适应课程实验教学的要求。从2009 年投入批量生产以来,学生反映良好,极大地提升了实验教学的效果。此外,还为本科毕业生提供了毕业设计的综合实验平台,能够满足多种教学需求。

关键字:实验系统  采用电路  可动态重组 编辑:探路者 引用地址:基于实验系统采用电路可动态重组的设计方案

上一篇:基于AT89C51和AT89C2051的红外遥控系统应用研究
下一篇:基于Arduino开发环境的光电编码器检测仪设计方案

推荐阅读最新更新时间:2023-10-12 22:38

基于PXI电子液压制动系统EHB驾驶员在回路混合仿真实验平台
应用领域:控制与仿真 挑战:研发EHB控制器的关键点在于通过大量测试实验掌握执行元件的工作性能,在模拟环境下有效地进行参数仿真、软件仿真,减少实际路面测试带来的困难,并开发基于虚拟现实技术的混合仿真平台,在不同虚拟环境下由驾驶员产生的的实际操纵动作对EHB快速原型的控制器进行功能验证和逼真的产品性能演示。                                            实验台外观 应用方案:利用LabVIEW构建轮缸压力测控系统,在大量测试试验的基础上选择合适的PWM载波频率和占空比控制EHB系统的高速开关电磁阀,满足对轮缸压力控制的要求;通过NI PXI-8464 CAN总线接口卡
[嵌入式]
AT89S51单片机实验系统的开发与应用
摘要:针对传统单片机实验系统依赖于仿真器调试,实验成本高且效率低,不适应现代科技的开发要求的问题,为改善单片机实验系统的性能,采用在系统编程(ISP)的方法,利用AT89S51芯片设计了一种单片机实验系统。实验表明系统结构简单,实用性强,达到了工科类高职生快速掌握单片机的基础知识的预期效果。 关键词:AT89S51;实验系统;ISP;74LS164 目前单片机应用已渗透到各个领域,单片机技术的发展也因此日新月异。作为实践性很强的应用型学科,单片机研发及教学离不开实验。传统的单片机实验系统需要频繁拔插烧写单片机芯片来编程,依赖于仿真机调试,实验成本高且效率低,已不适应现代科技开发需求。如何充分合理利用单片机的性能,方便用户高效学
[工业控制]
AT89S51单片机<font color='red'>实验</font><font color='red'>系统</font>的开发与应用
采用单片机智能照明控制系统电路设计
  本系统主要由光照检测电路、热释电红外线传感器及处理电路、单片机系统及控制电路组成。工作时,光照检测电路和热释电红外线传感器采集光照强弱、室人是否有人等信息送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。    系统硬件设计   按图1构成的系统硬件电路如图2所示。为了使系统功能更加完善,在该系统中可以增加时间显示电路,用于显示当前的时间。目前较为流行的单片机有AVR和51单片机,从系统设计的功能需求及成本考虑,51单片机性价比更高。AT89C52是拥有2个外部中断、2个 16位定时器、2个可编程串行UART的单片机。中心控制模块采用 AT89C52 单片机已完全满足设计需
[电源管理]
<font color='red'>采用</font>单片机智能照明控制<font color='red'>系统</font><font color='red'>电路</font>设计
采用混合信号高电压单片机实现LED降压-升压驱动电路
   LED背景知识   近年来,LED逐渐成为一种可行的新兴光源,它们已经不再仅仅用作电子设备的“状态指示灯”。技术进步使得LED的发光效率通常可达白炽灯的三倍多,此外,LED还非常耐用,寿命超过上万小时。   针对照明应用的大功率LED要采用恒流源驱动,一些标准驱动电流常常用在不同LED生产商的产品中,其中,350mA和700 mA最为常见。根据串联结的类型和数量,LED两端的正向压降可能不同。许多生产厂商的大功率LED产品都在单个模块中集成了多个结。   驱动LED的一种简单方法是采用串联电阻来限制电流。线性稳压器或运算放大器也可连接成恒流配置。然而,此类线性方法无法在所需要的功率水平下提供足够的效率。   开关电源(
[电源管理]
<font color='red'>采用</font>混合信号高电压单片机实现LED降压-升压驱动<font color='red'>电路</font>
采用电容降压的LED驱动电路分析
采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。 图一为一个实际的采用电容降压的LED驱动电路﹕请注意﹐大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等 )有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级 。 电路工作原理﹕ 电容C1的作用为降压和限流﹕大家都知道﹐电容的特性是通交流﹑隔直流﹐当电容连接于交流电路中时﹐其容抗计算公式为﹕ XC = 1/2πf C 式中﹐XC 表示电容
[电源管理]
<font color='red'>采用</font>电容降压的LED驱动<font color='red'>电路</font>分析
如何采用运放构成RC定时电路
当对一根光纤施加轻微压力使其成V形时,用电池供电的手持式"光纤查找器"可测量从其中逸出的光线。一对光电管对弯角两侧的模拟电平做比较,以指示是否有光传输及其方向,PLL音调解码器指示多达三种光调制音。想法是用一个交换中心的信号来"标记"一根光纤,这样,电线杆上或检修孔中的操作员就可以查找并正确地判断出光纤,然后再做切割和剪接,从而避免了意外故障。   因为一个电源开关前面板上没有空间,所以设计需要一种滑动夹取机制,当操作员插入一根光纤时,该装置会在其插到底时通电。每当操作员插入另一根光纤时,装置都必须保持开启,而当操作员完成操作不再激活夹取滑块时,装置自动关断。这种设计没有空间去容纳一个庞大的多极开关;只适合于单极工作。设计采
[模拟电子]
如何<font color='red'>采用</font>运放构成RC定时<font color='red'>电路</font>
人民健康系统工程机器人实验室成立
2月12日,人民健康系统工程机器人实验室正式成立,由中国工程院倪光南院士、俞梦孙院士、英国皇家医学院何月荣院士联合秀域、遨博联合发起,旨在推进健康领域中人工智能机器人的发展。 据了解,该实验室关注新兴科技特别是机器人科技的发展,用系统工程的视角围绕大健康理念开展研究,协调机器人、中医、康养等多方力量,推进“人民健康系统工程机器人”顶层设计,并进行机器人系统集成、医疗大数据、人体穴位精准识别、多能量场康复理疗等技术的攻关,探索促进人民健康事业与新兴科技产业协同发展的新应用场景,将为“健康中国2030”贡献积极力量。 值得注意的是,会议当天,秀域集团与遨博集团签署了人工智能机器理疗机器人1万台订单,这是全球最大的单款协同机器人订单
[机器人]
人民健康<font color='red'>系统</font>工程机器人<font color='red'>实验</font>室成立
基于LabVIEW的多点温度采集实验开发系统设计
摘要:文中运用LabVIEW灵活的图形化可视化编程技术,将单片机课程与虚拟仪器技术相结合,设计了基于LabVIEW的多点温度采集处理演示及实验系统。该系统以DS18B20为温度传感器,利用单片机为核心控制器设计了多点温度数据采集下位机系统;利用LabVIEW设计出具有良好界面的多点温度数据采集上位机控制系统。该系统具有实时数据采集、数据显示、数据处理与分析、超限报警以及数据回放等功能。该系统交互性较好,可激发学生的学习兴趣和创新意识。 在对多类型、多通道信号同时进行检测和控制中,传统的测控系统能力有限。如何将计算机与各种设施、设备结合。简化人工操作并实现自动控制,满足社会的需求,成为一个很迫切的问题。温度检测是现代检测技术的重
[测试测量]
基于LabVIEW的多点温度采集<font color='red'>实验</font>开发<font color='red'>系统</font>设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved