增加RC压控振荡器的频率区间

最新更新时间:2014-04-16来源: 互联网关键字:压控振荡器 手机看文章 扫描二维码
随时随地手机看文章

典型的电压-频率转换器也叫VCO(压控振荡器),其中IC的输入电压对输出频率有一个简单的调节特性。它的一般形式为F=kV/RC,其中,RC是相关定时电阻与电容的时间常数。这些器件的输出频率范围很广,但很少有器件能够在一组RC时间常数的整个区间内做调谐。但是,如果随输入电压的变化而改变定时比率,则可以用一个实现方法,将调谐区间放大到几乎整个频率范围。

实现这一目标的方法之一是用一个可变电容替代定时电容,可变电容值可随其偏压而作反向改变,这就是变容二极管。对于本设计,考虑采用ADI公司的AD654电压-频率转换器,因为它很简单,带宽至少有1MHz.

图1给出了采用一个固定电阻与电容的典型实现方法。对于图中的值,当输入从0V~10V变化时,频率范围大约为10Hz~30kHz.用NTE618超突变变容管替代定时电容后(如图2所示),同样0V~10V的输入范围可获得大约10Hz~1MHz以上的调谐区间。


                          图1


                          图2


图3比较了两种转换器结构的调谐曲线。注意范围有相当大的增长,但付出了线性度的代价,另外也会影响到温度稳定性。总之,用精度换取了调谐范围,在基本应用中这应该是可以接受的,因为此时不需要特殊的精度。


                           图3


超突变变容二极管可在少许偏压变化下,获得大的频率变动,因为它有大的电容比。对有些超突变变容管,比率可高达15,例如NTE618就是一个AM接收机使用的超突变变容管。由于转换器频率在较大电压时会增加,电容减小,从而提高了频率。这种响应组合产生了宽的调谐范围。0.01μF的耦合电容将变容管的偏置电压与转换器核心的工作电压隔离开来。用1MΩ大阻值电阻对变容管做轻度偏置,可避免给振荡器增加负载。

这种特性某种程度上是可计算且可预测的,甚至可以从数据表做。可以在微软Excel中生成变容二极管的调谐曲线。然后,将此信息用于该转换器的电压-频率转换方程。对于NTE618,电容对于电压的近似关系表达式为:

图4表示出计算值与测量值之间的类似性。较高频率下差异更大些,因为变容二极管的电容降低到了与电路与器件杂散电容相当的量级。仔细布线可以尽量减少这个问题,增加范围。

                          图4

注意低输入电压、变容管响应,以及固定电容转换器响应几乎是完全相同的,因为变容管与电压有反向指数关系。实现这一范围有一个有用的结果,这就是无需设置转换器之间的开关就能扩展调谐范围。采用这种方案并结合锁相环、调制器或函数发生器,就可以探讨做其它有用和有趣的应用。

关键字:压控振荡器 编辑:探路者 引用地址:增加RC压控振荡器的频率区间

上一篇:浅谈数字隔离器件的选型与应用
下一篇:工程师该如何选择电源?

推荐阅读最新更新时间:2023-10-12 22:38

与非门组成压控振荡器电路图
图是用CMOS与非门组成的压控振荡器电路。 图示线路类似图C的电路,C由可调的CX代替,R由用VA调节的NMOS管代替。R变化范围为1~10千欧,其最小值由被并联的R1(10千欧)和NMOS管所决定。NMOS管一般从
[模拟电子]
与非门组成<font color='red'>压控振荡器</font>电路图
STM32 PCB触摸按键(RC检测法)
无意中翻出了大学刚毕业时用来来忽悠老板的触摸按键的程序,突然感概白发又多了。做硬件的不容易,做软件的也不容易,做硬件又做软件的更不容易。。。。 回想起来印象也不深刻,感觉纯粹为了好玩,又发现了键盘边有个有三个焊盘的pcb板,心血来潮把就它翻新了一下。 感觉触摸按键比物理按键简单多了,物理按键还要按键(废话),但是触摸按键的可是是一个铜片,铁片,金属片(反正是导体就行了)。如果手头上又没有pcb按钮的,可以自己随便找个废板,在有铜片的地方挖个按钮引条线出来也是可以的,甚至拿一条导线也可以。手按按钮时要在按键上贴个胶纸绝缘,不然,按下的时候电流都被人体吸光了。 要说明一下,程序和硬件都是借鉴STM8,ST有相关例程,是AN几就忘了
[单片机]
基于AT89C51RC的电脑钥匙外围电路设计
微机防误闭锁系统的电脑钥匙用于在操作过程中接收五防主机发出的操作票,然后按照操作票内容依次对电编码锁和机械编码锁进行解锁操作,即对运行人员的实际操作进行监控。操作过程中,电脑钥匙给出操作提示,运行人员应按照电脑钥匙的提示逐步进行正确操作。若运行人员的实际操作与电脑钥匙的提示不符,则电脑钥匙将发出报警并强制闭锁,从而有效避免误操作事故的发生。 1 电脑钥匙工作流程 电脑钥匙的数据传输流程如图l所示。 在工控主机内,预先存储了所有没备的操作规则。工控主机通过红外线通信口将正确的操作内容输入电脑钥匙,运行人员用电脑钥匙就可到现场进行操作。操作时,在电脑钥匙的显示屏上将顺序显示正确的操作内容,并通过光电
[单片机]
基于AT89C51<font color='red'>RC</font>的电脑钥匙外围电路设计
51单片机读写RC522卡参考例程及上位机调试软件源码
原理图: 单片机源程序如下: #include reg52.h #include main.h #include mfrc522.h #include string.h //M1卡的某一块写为如下格式,则该块为钱包,可接收扣款和充值命令 //4字节金额(低字节在前)+4字节金额取反+4字节金额+1字节块地址+1字节块地址取反+1字节块地址+1字节块地址取反 unsigned char code data2 = {0x12,0,0,0}; unsigned char code DefaultKey = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; unsigned char g_u
[单片机]
51单片机读写<font color='red'>RC</font>522卡参考例程及上位机调试软件源码
RC吸收电路的设计经验分享
开关电源设计中,我们常常使用到一个电阻串联一个电容构成的RC电路, RC电路性能会直接影响到产品性能和稳定性。本文将为大家介绍一种既能降低开关管损耗,且可降低变压器的漏感和尖峰电压的RC电路。 高频开关电源在开关管关断时,电压和电流的重叠引起的损耗是开关电源损耗的主要部分,同时,由于电路中存在寄生电感和寄生电容,在功率开关管关断时,电路中也会出现过电压并且产生振荡。如果尖峰电压过高,就会损坏开关管。同时,振荡的存在也会使输出纹波增大。为了降低关断损耗和尖峰电压,需要在开关管两端并联RC缓冲电路以改善电路的性能。 图1 图1所示的是一个简单的反激式开关电源电路,从图中可以看出RC电路在图中的出现过6次从RaCa—R
[电源管理]
<font color='red'>RC</font>吸收电路的设计经验分享
STM32F103RC-SPI通信速率的问题
本文主要分析SPI1,因为SPI1在时钟线APB2上有些特殊。 一、要分析SPI通信速率,首先要通过STM32F103的datasheet查看一下,通常使用的工作条件,如下图。 二、通过 datasheet可以知道SPI1的通信速率可达18MHz,如下图所示。 通过datasheet可以知道SPI1的通信速率可达18Mb/s, SPI配置成8位数据宽度,则频率也就是18MHz。这个速率仅仅是在常用的工作条件下测得的。并不是说SPI1最高只能达到18MHz。fPCLK2为72MHz,SPI1至少要经过二分频,所以SPI1时钟频率最高为36MHz,这个频率按照常用条件来说,已经是超频了。18MHz仅仅是官方所以测得最稳定条件
[单片机]
STM32F103<font color='red'>RC</font>-SPI通信速率的问题
如何使用PIC内含之RC振荡器来当作系统时钟源?
从PIC12C508开始,逐渐地,PIC有很多型号都内含有可以当作系统时脉源的RC振荡器。有了这项功能,不但让整体系统的成本进一步往下降;并且还因为内部的RC振荡源是经过校正的,而获得了比外接RC振荡更精确的时钟。 不过,想要使用内部RC振荡而有精确的时钟,是有方法的。除了在刻录IC时要指定使用内部RC振荡以外,还要在原始程序代码中加上一些命令才行。而命令的用法,还因不同种类的PIC而有不同。 以12-BIT 架构的PIC而言,例如PIC12C508,Microchp在IC的最后一行程式内存,加上一个 movlw 0x?? 的命令,当芯片复位时,IC会先运行该命令之后,再跳到地址0继续运行。因此,如果您一直没有去修改到w暂
[单片机]
用P89C51RC+IA和EMP7064S实现转速测量
    摘要: 介绍一种应用M/T法测速原理,采用单片机P89C51RC+IA和EMP7064S实现转速测量的硬件电路实现方法,并给出了码盘脉冲预处理电路的可编程器件(EMP7064S)的实现。     关键词: 码盘 转速测量 测量时间 编码脉冲 转速测量是伺服控制系统重要组成部分。迄今为止,测速可分为两大类:模拟电路测速和数字电路测速。微电子技术的发展,数字测速技术的进步,数字测速性能的提高,使数字测速受到人们的重视。 随着微电子技术的发展、计算机技术的成熟,出现了以计算机为核心的数字测速装置。这样的速度测量装置测量范围宽、工作方式灵活多变、适应面广,具有普通数字测速装置不可比拟的优越性。本文应用M
[应用]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved