基于无线传感器节点的低功率电源转换技术方案

最新更新时间:2014-04-23来源: 21IC关键字:无线传感器  低功率电源 手机看文章 扫描二维码
随时随地手机看文章

无线传感器节点(WSN)基本上是一个独立的系统,它由一些换能器组成,能将环境能源转换成电信号,其后跟着的通常是DC/DC转换器和管理器,以通过合适的电压和电流给下游电子组件供电。下游电子组件包括微控制器、传感器和收发器。

在实现WSN时,需要考虑的一个问题是:运行这个WSN需要多少功率?从概念上看,这似乎是一个相当简单的问题,然而实际上,由于受到若干因素的影响,这是一个有点难以回答的问题。例如,需要间隔多长时间获取一次读数?或者,更重要的是,数据包多大?需要传送多远? 这是因为,获取一次传感器读数,系统所用能量约有50%是收发器消耗掉的。有若干种因素影响WSN能量收集系统的功耗特性。

当然,能量收集电源提供的能量多少取决于电源工作多久。因此,比较能量收集电源的主要衡量标准是功率密度,而不是能量密度。能量收集系统的可用功率一般很低,随时变化且不可预测,因此常常采用连接到收集器和辅助电力储存器的混合架构。收集器(由于能量供给不受限制和功率不足)是系统的能源。辅助电能储存器 (电池或电容器) 产生更大的输出功率但储存较少的能量,在需要时供电,除此之外定期接收来自收集器的电荷。因此,在没有可从其收集能量的环境能源时,必须用辅助电能储存器给WSN供电。当然,从系统设计师的角度来看,这进一步增加了复杂性,因为他们现在必须考虑,必须在辅助电能储存器中储存多少能量,才能补偿环境能源的不足。究竟需要储存多少能量,取决于几个因素,包括:

(1) 环境能源不存在的时间。

(2) WSN占空比(即读取数据和发送数据的频度)。

(3) 辅助电能储存器(电容器、超级电容器或电池)的尺寸和类型。

(4) 环境能源是否足够? 即既能充当主能源,又有足够的富余能量给辅助电能储存器充电,以当环境能源在某些规定时间内不可用时,给系统供电。

环境能源包括光、热差、振动波束、发送的RF信号或者其他任何能够通过换能器产生电荷的能源。以下表1说明了不同能源能够产生的能量大小。

 

 

表1:能源及其产生的能量大小一个毫微功率 IC 解决方案

显然,WSN 可获得的能量很低。这又意味着,该系统中所用组件必须能够应对这种低功率情况。尽管收发器和微控制器已经解决了这个问题,但是在电源转换方面仍然存在空白。不过,凌力尔特推出的LTC3388-1/LTC3388-3可以专门应对这种需求。这是一款20V输入、同步降压型转换器,可提供高达50mA的连续输出电流,采用3mmx3mm(或MSOP10-E)封装,参见图1所示原理图。该器件在2.7V至20V的输入电压范围内工作,适用于多种能量收集和电池供电应用,包括 “保持有效” 的电源和工业控制电源。

 

 

图1:LTC3388-1/LTC3388-3典型应用原理图

LTC3388-1/LTC3388-3运用迟滞同步整流方法,以在很宽的负载电流范围内优化效率。该器件在15uA至50mA负载范围内可提供超过90%的效率,且仅需要400nA静态电流,从而使其能够延长电池寿命。该器件仅需要5个外部组件,可为种类繁多的低功率应用组成非常简单和占板面积很紧凑的解决方案。

另外,该器件还提供准确的欠压闭锁(ULVO)功能,以在输入电压降至低于2.3V时禁止转换器,从而将静态电流降至仅为400nA.一旦进入稳定状态(无负载时),LTC3388-1/LTC3388-3就进入休眠模式,以最大限度地降低静态电流,使其达到仅为720nA.然后,该降压型转换器按需接通和断开,以保持输出稳定。当输出在持续时间很短的负载 (例如无线调制解调器,这类负载要求低纹波) 情况下处于稳定状态时,另一种备用模式禁止切换。这种高效率、低静态电流设计适用于能量收集等多种应用,这类应用需要长充电周期,同时以短突发负载为传感器和无线调制解调器供电。

结论

在需要转换毫微安电流的较低功率情况下,电源转换IC的选择就变得有限。而LTC3388-1/LTC3388-3单片降压型转换器的极低静态电流使该器件非常适用于低功率应用。低于1?A的静态电流可为便携式电子产品中 “保持有效” 的电路延长电池寿命,实现了WSN等全新一代能量收集应用。

关键字:无线传感器  低功率电源 编辑:探路者 引用地址:基于无线传感器节点的低功率电源转换技术方案

上一篇:基于SLH89F5162单片机的公交车语音报站系统
下一篇:利用ADS设计低噪声放大器

推荐阅读最新更新时间:2023-10-12 22:38

用于环境监测的无线传感器网络节点设计
引言   环境监测是无线传感器网络的重要应用领域。为搜集某一区域内的环境数据,传感器节点需要在无人值守情况下长时间地工作在恶劣环境条件下。传感器节点的软件设计为节点正常工作提供了重要保证。   1 无线传感器网络系统结构   整个传感器网络是由若干个采集节点、1个汇聚节点、1个数据中转器以及1个便于用户查看和控制的上位机组成。系统结构如图1所示。采集节点用于对环境数据的采集、数据的预处理,承当数据的路由;汇聚节点负责整个网络的开启和维护,向采集节点发送命令,搜集节点的数据以及和数据中转器之间的串口通信;数据中转器承担数据的中转及转发上位机的命令;上位机是数据搜集的终端设备,并且可以根据用户的需要对节点的采
[测试测量]
用于环境监测的<font color='red'>无线传感器</font>网络节点设计
基于太阳能采集套件的无线传感器网络实现
清洁 太阳能 的利用近几年来一直是市场热点,太阳能手机、太阳能路灯、太阳能公交车、太阳能电动自行车等一直是很多开发人员的目标应用,可是他们一直找不到一个快速的中间件解决方案来帮助他们发挥其创造力。幸运的是,TI今天帮他们解决了这一难题。      德州仪器(TI)最近宣布针对工业、交通、农业以及商业等多领域应用推出一款可将太阳光转换为电源的太阳能采集(SEH)开发套件,从而充分满足了无线网络系统设计人员对可替代能源的需求。尺寸仅为信用卡大小的eZ430-RF2500-SHE套件将Cymbet公司的EnerChip薄膜电池技术与TI MSP430 微处理器 (MCU)、CC2500 射频 (RF) 收发器和 eZ
[模拟电子]
基于太阳能采集套件的<font color='red'>无线传感器</font>网络实现
无线传感器网络节点的硬件平台可扩展研究
无线传感器网络是一种由传感器节点构成的网络,能够实时地监测、感知和采集节点部署区内的观察者感兴趣的感知对象的各种信息,如光强等,并对这些信息进行处理,然后以无线的方式发送出去,通过无线网络最终发送给观察者,在军事侦察、环境监测、医疗护理、智能家居及工业生产控制等领域有着广阔的应用前景。无线传感器网络节点的传统结构主要由处理器单元、无线传输单元、传感器单元和电源模块单元4部分组成。具体应用不同,传感器节点的设计也不尽相同。节点的功能不同,主要是节点韵传感器单元在变化,传统的节点具有单一或较少的功能,为了感知更多的物理量,需要节点具有扩展性,来实现更多的功能,提出了无线传感器网络节点的分布式体系结构的设计。该设计借鉴了IEEE 145
[单片机]
<font color='red'>无线传感器</font>网络节点的硬件平台可扩展研究
基于S3C6410和无线传感器网络的手持终端设计
无线传感器网络(Wireless Sensor Networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。传感器技术、微机电系统、现代网络和无线通信等技术的进步,推动了现代无线传感器网络的产生和发展。无线传感器网络扩展了人们信息获取能力,将客观世界的物理信息同传输网络连接在一起,在下一代网络中将为人们提供最直接、最有效、最真实的信息。无线传感器网络能够获取客观物理信息,具有十分广阔的应用前景,能应用于军事国防、工农业控制、城市管理、生物医疗、环境检测、抢险救灾、危险区域远程控制等领域。 无线传感器网络是由部署在监测区域内的大量廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的
[单片机]
基于S3C6410和<font color='red'>无线传感器</font>网络的手持终端设计
基于无线传感器网络的节水灌溉控制系统
摘要:为提高灌溉用水利用率,缓解水资源日趋紧张的矛盾,采用基于ZigBee技术的无线传感网络与GPRS网络相结合的体系结构,基于CC2530芯片设计无线节点,开发了此节水灌溉控制系统。该系统以单片机为控制核心,由无线传感器节点、无线路由节点、无线网关、监控中心四部分组成,能实时监测土壤温湿变化,根据土壤墒情和作物用水规律实施精准灌溉。系统实现了节水灌溉的自动化控制,有助于改善农业灌溉用水的利用率和灌溉系统自动化的水平普遍较低的现状。 关键词:ZigBee;无线传感器;节水灌溉;墒情监测 农业灌溉是我国的用水大户,其用水量约占总用水量的70%。据统计,因干旱我国粮食每年平均受灾面积达两千万公顷,损失粮食占全国因灾减产粮食的
[工业控制]
基于<font color='red'>无线传感器</font>网络的节水灌溉控制系统
物联网无线传感器节点设计
无线传感器节点( WSN )在促进物联网( IoT )发展方面发挥着关键作用。WSN的优点在于,它的功耗极低,尺寸极小,安装简便。对很多物联网的应用而言,譬如安装在室外的应用,WSN可使用太阳能供电。当室内有光,系统就由太阳光供电,同时为细小纽扣电池或超级电容器充电,以在没有光的情况下为系统供电。 在一般情况下,无线传感器节点是传感器为基础的设备,负责监察温度、湿度或压力等条件。节点从任何类型的传感器收集数据,然后以无线方式传递数据到控制单位,譬如计算机或移动设备,并在此处理、评估数据,并采取行动。理想情况下,节点可以由能量收集机制获得作业电源,成为独立运作的设备。从一般意义上讲,能量收集的过程是捕捉并转换来自光、振动,或热等
[网络通信]
无线传感器网络监护系统设计原理及方案
医疗传感器节点的设计 无线传感器网络(Wireless Sensor Network)是一项综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种领域技术的新兴技术,该技术具有广泛的应用场景。 随着技术的发展,WSN(Wireless Sensor Network)将会在医疗实践的许多方面产生深远影响。本文主要阐述无线传感器网络医疗监护系统的体系结构以及监护节点设计的一般原则。 无线传感器网络的体系结构 在监测区域内布置大量传感器节点,节点间采用自组织方式进行组网以及利用无线通信技术进行数据转发,每个节点都具有数据采集与数据融合转发双重功能。节点对本身采集到的信息和其它节点转发给它的信息
[嵌入式]
基于无线传感器网络的海洋水环境监测系统的设计
引言 近几年来,随着海洋事业的迅速发展,海洋环保已经提上议事日程。因此,海洋水环境监测成为人们越来越关注的焦点。 无线传感器网络广泛应用于军事侦察、环境监测、目标定位等领域,能够实时地感知、采集和处理网络覆盖范围内的对象信息,并发送给观察者。它具有覆盖区域广,可远程监控,监测精度高,布网快速和成本低等优点。把无线传感器网络技术应用到海洋水环境监测系统中,是人们近几年来研究的焦点。 Zigbee与其他的无线通信标准相比,适用于吞吐量较小,网络建设投资小,网络安全性高,不便于频繁更换电源的场合。在工业控制领域利用传感器基于Zigbee技术组成传感器网络,可以使得数据采集和分析变得方便和容易。Zigbee网络用于传感网络的组
[工业控制]
基于<font color='red'>无线传感器</font>网络的海洋水环境监测系统的设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved