一种915MHz射频收发系统的ADS设计与仿真

最新更新时间:2014-04-30来源: 21IC关键字:915MHz  射频收发系统 手机看文章 扫描二维码
随时随地手机看文章

1、引言

近几年来,无线射频识别技术越来越受各国重视。随着 供应链管理、集装箱、工业、科研和医药等行业对3 m以上射频识别技术的需求不断增加,国内外已经把研究的热点转向超高频段和微波频段。射频电路的设计主要围绕着低成本、低功耗、高集成度、高工作频率和轻 重量等要求进行。本文对915MHz射频收发系统做了进一步的研究。

ADS(Advanced Design System)软件是Agilent公司开发的,可以支持从模块到系统的设计,能够完成射频和微波电路设计、通信系统设计、射频集成电路设计和数字信号处理设计。该软件还可以完成时域和频域、数字和模拟、线性和非线性、电磁和数字信号处理等多种仿真。本文主要介绍了如何使用ADS设计收发系统,并在ADS的模拟和数字设计环境下进行一些仿真。

2、射频发射系统的设计与仿真

射 频发射系统最重要的指标是系统增益。根据分析选择,发射系统的各个模块分别采用以下器件:Micro Devices公司生产的PLL400-875作为射频信号的发生器。该器件的输出中心频率为915MHz。射频滤波器采用4DFA-915E-10,此芯片的中心频率是915 MHz,通带带宽为±13dB,插入损失为2.2dB,波纹系数为1.0dB,最大波纹比为20。混频器采用Mini-circuits公司生产的ADE-12MH。ADE-12MH的本振和射频信号的输入频率范围是10-1200 MHz,全波段转换损耗6.3dB。功率放大器选用Sirenza公司的SPA-2118,该芯片的功率为1W,工作范围是810MHz-960MHz。

 

 

图1、用于仿真的发射系统原理图

使用ADS软件创建射频发射系统的原理图,再在原理图中加入增益仿真控制器,就可以知道增益在系统各个部分的分配情况。用于仿真的发射系统的原理图如图2所示,仿真结果如图2所示。

 

 

图2、功率增益预算曲线

由图2可知,整个发射系统的增益为35.8 dB,因为输入的信号为-10 dBm,所以功率放大器输出的射频信号大小为25.8 dBm。

3、射频接收系统的设计与仿真

射频接收系统的设计与仿真使用行为级功能模块实现,行为功能模块包括天线、 带通滤波器、低噪声放大器、混频器、本振信号源、中频滤波器和中频放大器等。接收端在设计中要考虑增益、噪声系数、灵敏度等因素,比发射端的设计更为复 杂。由于接收端包含很多有源器件,有源器件的非线性对整个接收系统会产生很大的影响,比如当只输入一个信号时会出现增益压缩,当输入两个以上的信号时会出现互相调制等。

在本设计中,经过分析,混频器采用ADE-12MH。低噪声放大器采用两片AD8325分别对I,Q两路混频滤波后的信号进 行放大,AD8325S通过编程控制放大器的数字接口,可以使增益0.75dB逐级变化,最后可以达到59.45dB。为了保证功放芯片能尽量将能集中在我们所需的频率上,在功放之前加入一个射频带通滤波器,这样频率较高和较低的噪声信号可以得以滤除,使得输入功放 的信号比较纯净。射频滤波器采用4DFA-915E-10。在此设计中,还用到了Minicireuits公司的功率分配器SCN-27和90度移相功分 器QCN-27。使用ADS对接收系统进行建模,如图3所示。

 

 

图3、超外差式接收系统原理图电路

由于各个模块的参数均为已知,通过计算可以得出系统总的噪声系数,三阶互调截等。噪声系数定义为系统输入信噪功率比(SNR)i=Pi/Ni与输出信噪 功率比(SNR)o=Po/No的比值,常用F表示。噪声系数表征了信号通过系统后,系统内部噪声造成信噪比恶化的程度。噪声系数常用NF(单位为dB) 表示。根据噪声系数的级联式(1)可以计算出系统总的噪声系数,系统总的噪声系数就是从图3中的低噪声放大器向输出端方向看过去所表现出的噪声系数,也可 以理解为当接收信号由低噪声放大器传输到输出端,接收端对信噪比的恶化程度。

 

(1)

 

接收机的一个很重要指标是灵敏度,它定义为:在给定的信噪比的条件下,接收机所能检测的最低输入信号电平。灵敏度与所要求的输出信号质量(即输出信噪比)有关,还与接收机本身的噪声大小有关。接收机的灵敏度可由下式(2)计算得出:

Pin,min(dBm)=NRS(dBm/Hz)+NF(dB)+(SNR)o,min(dB)+10logB (2)

假设接收机输入端满足共轭匹配,由源内阻Rs产生的噪声输送给接收机的噪声功率为其额定输出,即:NRS=4KTaRs/4Rs=KTa。假设Ta=290 K,则NRS=-174 dBm/Hz。所以灵敏度可表示为:

Pin,min(dBm)=-174dBm/Hz+NF(dB)+(SNR)o,min(dB)+10logB

接收机所接收的信号强弱是变化的,通信系统的有效性取决于它的动态范围,即高性能的工作所能承受的信号变化范围。动态范围的下限是灵敏度,上限由最大可接受的信号失真决定。在本设计中考虑的是低噪声放大器的输入端的动态范围。动态范围可由下式(3)得到:

 

(3)

 

利用ADS软件对接收端进行S参数仿真,该仿真可以用于测量各个器件的S参数等。在本仿真中,可以看成是当900~930MHz,以1MHz为步长的各个频率分量通过该接收端时,接收端对各个频率分量的增益或衰减大小的仿真。仿真结果如图4所示。

 

 

图4 、S参数仿真结果

由 仿真结果可知在中心频率915MHz处,增益最大,为63.287dB。在标记maker2处,频率与标记maker1处相差12.21MHz,衰减相差14.698dB,符合技术指标。在标记maker3处,频率与标记maker1处相差12.06MHz,衰减相差13.080dB,符合技术指标。

 

 

图5、接收系统功率增益预算曲线

利用ADS软件对接收系统进行增益预算仿真,可以知道系统增益在系统各个部分中的分配情况。仿真结果如图6所示。

 

 

图6、输入信号的功率谱

由图3可以看到在射频带通滤波器BPF1处,系统增益为-1dB,这是因为射频带通滤波器有1dB的插入衰减。在射频放大器AMP1处,系统增益为20dB,这是射频放大器的21 dB增益减去射频带通滤波器的1 dB插入衰减,系统前端总共有20dB的增益。根据标记m7可知,在负载终端2系统增益为63.287dB。

接收机输出的信号是射频频率与本振频率的差值以及它们的各次谐波和互调,各次谐波和互调通过中频滤波器时已经衰减,通过接收机的频域响应可以查看上述频率 转换。在ADS软件中,谐波平衡仿真主要用于频域分析,采用谐波平衡仿真可以得到接收机的频域响应。仿真结果如图7所示。

 

 

图7、中频输出的功率谱

由图4可以看出,输入端口在915 MHz时,信号为-39.999dBm,这与输入端口的的单频功率源输入功率一致。由图5可知,中频输出端口在70MHz时,信号为22.501dBm。

4、结语

通过对实际的集成射频模块的选择,以及利用ADS分别对射频接收和发射系统的仿真,可以得到系统的一些重要性能指标。通过对这些性能指标进行分析,可以得出设计的射频收发系统是可行的,可以满足实际无线通信环境对射频系统的要求。

关键字:915MHz  射频收发系统 编辑:探路者 引用地址:一种915MHz射频收发系统的ADS设计与仿真

上一篇:各类微波器件的巴伦设计
下一篇:动态电源管理,实现更快速、更高效的电池充电

推荐阅读最新更新时间:2023-10-12 22:39

​优化信号链的电源系统 — 第3部分:RF收发
简介 本信号链电源优化系列文章的第1部分讨论了如何量化电源噪声以确定其影响信号链器件的哪些参数。通过确定信号处理器件可以接受而不影响其所产生信号的完整性的实际噪声限值,可以创建优化的配电网络(PDN)。在第2部分中,该方法被应用于高速模数和数模转换器,证明将噪声降低到必要水平并不一定要提高成本、增加尺寸、降低效率。这些设计参数实际上可以在一个优化的电源解决方案中满足。 本文重点关注信号链的另一部分——RF收发器。本文将探讨器件对来自各电源轨的噪声的敏感度,确定哪些器件需要额外的噪声滤波。本文提供了一种优化的电源解决方案,并通过将其SFDR和相位噪声性能与当前PDN(当连接到RF收发器时)进行比较来进一步验证。 优化A
[电源管理]
​优化信号链的电源<font color='red'>系统</font> — 第3部分:<font color='red'>RF</font><font color='red'>收发</font>器
ADI全新宽带RF收发器简化系统设计并降低成本
高度集成的ADRV9026收发器在适用于FDD和TDD系统的单芯片中提供最低功率、最广泛的频率范围和最小的占用面积 Analog Devices, Inc (ADI)推出一款新的宽带收发器,它是RadioVerse™设计和技术生态系统的一部分。ADRV9026用于支持基站应用,包括单标准和多标准3G/4G/5G宏单元基站、大规模MIMO (M-MIMO)和小蜂窝系统。ADRV9026是ADI的第四代宽带RF收发器,与低功率、小尺寸的通用平台解决方案进行四通道集成。这款软件定义的新型收发器支持频分双工(FDD)和时分双工(TDD)标准,可以帮助简化3G/4G/5G应用的设计,同时降低系统功率、大小、重量和成本。 Rad
[网络通信]
ADI全新宽带<font color='red'>RF</font><font color='red'>收发</font>器简化<font color='red'>系统</font>设计并降低成本
基于RF2514的915MHz AM/ASK发射电路设计
RF2514是一个集成有锁相环的AM/ASK VHF/UHF发射器芯片,它可工作在100MHz~1000MHz频段,并采用AM/ASK 调制方式。芯片内含集成压控振荡器、鉴相器、分频器、基准晶体振荡器和锁相环回路, 能够发射数字信号。除了标准的低功耗模式外,RF2514还有一个自动闭锁功能,当PLL失锁时,发射器的输出无效。 RF2514的电源电压为2. 5~3.6V,能够对50Ω的负载提供+1dbm的输出功率。RF2514采用QSOP16封装,并具有体积小(4mm%26;#215;4mm)、价格低、性能好等特点,适合美国和欧洲VHF/UHF ISM频段的应用。 1 RF2514的引脚功能 RF2514各引脚的排列如图1所示
[应用]
基于国标ETC射频收发器的应用系统设计
    中国的公路不停车收费(ETC)系统应用市场越来越大,为了促进ETC应用的快速发展和成熟,国家相关部门开展了高速公路联网不停车收费的试点工程,比如,京津翼地区和长三角地区,所以对车载单元(OBU)的需求量也随之大幅增加。   目前市场上应用的OBU多数是通过分立元器件设计实现的,存在一致性、稳定性和可靠性的问题。博通(BEKEN)集成电路于2010年年初推出用于 ETC系统的射频收发器芯片BK5822,是目前世界上唯一一款集成了包括接收、发射和唤醒在内的全部射频功能的国标ETC收发器,其性能指标完全符合国家标准GB/T 20851.1-2007和GB/T 20851.2-2007。BK5822设计实现的OBU完全解决了上
[网络通信]
射频收发芯片nRF401在汽车胎压监视系统中的应用
0 引言 在汽车高速行驶过程中,轮胎故障是突发性交通事故发生的重要原因。据统计在高速公路上发生的交通事故中约有70%是由爆胎引起的。而保持标准的车胎气压行驶和及时发现车胎漏气是防止爆胎的关键,因此对汽车轮胎压力、温度等参数的监视是安全驾驶的重要保障。开发和研究汽车轮胎压力监视系统TPMS(Tire Pressure Monitoring System)是确保行车安全的有效技术措施,也是当前值得研究的重要课题。TPMS是目前最流行的汽车胎压监视系统,它在汽车行驶状态下可以实时、动态的对轮胎气压和温度进行自动监测,对轮胎气压过低、过高、漏气和温度过高等异常现象进行自动报警,以减少事故的发生率,确保行车安全。从系统构造而言,压力、温
[嵌入式]
基于微处理器和射频收发芯片的近程无线数传系统设计
  本文介绍了一种选用高性能、低功耗的32位微处理器STM32F103和射频收发芯片nRF24L01来设计短距离无线数据传输系统的具体方法。   1系统设计   短距离无线数传系统主要由 电源管理 器AMC7635、 微控制器 STM32F103、射频收发器nrf24l01三部分组成。下面分别介绍其关键电路。   1.1电源电路   本设计的电源采用3.7V锂 电池 供电,然后经低压降 电源管理 芯片AMC7635,以产生3.0V的电压来为STM32F103和nRF24L01供电,图1所示是本系统的供电电路。 图1系统供电电路   1.2 微控制器 电路    微控制器 选用带AR
[单片机]
基于微处理器和<font color='red'>射频</font><font color='red'>收发</font>芯片的近程无线数传<font color='red'>系统</font>设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved