基于国标ETC射频收发器的应用系统设计

发布者:岭南布衣最新更新时间:2011-04-15 来源: RFID世界网 关键字:ETC  射频收发器  不停车收费  车载单元 手机看文章 扫描二维码
随时随地手机看文章

    中国的公路不停车收费(ETC)系统应用市场越来越大,为了促进ETC应用的快速发展和成熟,国家相关部门开展了高速公路联网不停车收费的试点工程,比如,京津翼地区和长三角地区,所以对车载单元(OBU)的需求量也随之大幅增加。

  目前市场上应用的OBU多数是通过分立元器件设计实现的,存在一致性、稳定性和可靠性的问题。博通(BEKEN)集成电路于2010年年初推出用于 ETC系统的射频收发器芯片BK5822,是目前世界上唯一一款集成了包括接收、发射和唤醒在内的全部射频功能的国标ETC收发器,其性能指标完全符合国家标准GB/T 20851.1-2007和GB/T 20851.2-2007。BK5822设计实现的OBU完全解决了上述问题,批量生产的OBU具有一致性以及稳定可靠性。

  与应用分立元器件设计实现的OBU方案相比,BK5822仅需少量外部器件,最大程度上节约了PCB面积和外围器件的成本,缩短了研发周期,提高产品生产的成品率,BK5822集成了OBU所需的全部射频功能模块,使设计更为简单,研发调试更容易,量产的 OBU产品性能更稳定。

  基本技术特性

  BK5822射频收发器内部集成了完整的射频收发和调制解调功能,并嵌入了数据帧处理功能,进行FM0的编解码。同时BK5822还集成了唤醒电路,能够在电流很低的睡眠状态被唤醒,满足了ETC OBU在睡眠状态超低功耗的要求。BK5822采用了常用的小尺寸28pin 5mm×5mm QFN封装(图1),加上简单的外围应用电路,大大减小了在PCB上所占用的空间,从而节省了成本。


图1: BK5822 5mm×5mm QFN封装芯片
BK5822射频收发器的基本特性如下:工作频段5.7GHz~5.85GHz;能够同时接收5.83GHz和5.84GHz两个信道的信号;数据速率:上行512kbps,下行256kbps;输出功率为2dBm(传导);接收链路集成了AGC功能,能动态调整接收链路的增益;接收灵敏度达 -60dBm;ASK调制方式,FM0编解码;内置唤醒电路,唤醒灵敏度为-42dBm;发射功耗为40mA;接收功耗为35mA;支持2.6V到 3.6V的电源电压;睡眠状态的电流为13μA;最高8MHz的4线SPI接口。

  主要功能模块

  BK5822全部集成了ETC OBU的各射频功能模块,图2为BK5822射频收发器内部的系统框图,下面结合图2对各功能模块进行简要的描述。


图2: BK5822射频收发器内部的系统框图
发射模块(请做粗宋):对于发射有四种常用的工作模式,分别为发射单载波信号、发射正常burst信号、发射PN9连续信号、发射全“0”数据信号。发射正常Burst信号,用户只需向发射的FIFO中直接写入所需要发射的数据,BK5822检测到FIFO中有数据后,打开发射相关电路,将数据调制到载波上,发送出去,数据发送结束后,发射相关电路关闭,进入待机状态。其它三种工作模式用于测试模式,完成射频性能的测试。发射的调制深度是可调的,由数据调制前的Ramp决定;发射功率也是可调控的,通过相应寄存器的设置来实现,功率的调节范围可达到22dB。

  接收模块(请做粗宋):接收机采用低中频结构,在下变频后的Rx Filter是一个中间频率在5MHz的带通滤波器。当使BK5822进入接收状态,并且BK5822接收到数据包结束标志后,便自动将Rx关闭,同时中断引脚发出接收中断,BK5822进入待机状态,直到FIFO里面的数据被读空,或者清除接收中断后,接收才重新打开以等待接收数据。如果BK5822没有接收到数据包结束标志,将一直处于接收状态,此时如果要退出接收状态进入待机状态,需要通过相应寄存器设置强制关闭接收模块。为了对BK5822接收的信号进行更好的解调和解码,BK5822内部集成了一个AGC(自动增益控制),实现接收链路增益的自动调节。

  唤醒模块(请做粗宋):对14KHz方波进行检测,检测到N个方波后,BK5822给出唤醒中断信号。这里的N可由用户设定,范围是1~16。BK5822内部集成了带通的鉴频器,实现10KHz~20KHz范围内的方波能够产生唤醒中断,大大减小了误唤醒的概率。

  系统应用分析

  应用BK5822设计ETC OBU,电路实现方面十分简单,图3是应用BK5822设计ETC OBU的系统框图。从图可看出,整个OBU系统主要有两颗芯片,一个是主控芯片MCU,另一个是射频收发器BK5822。BK5822的外围应用器件很少,一颗是32.768MHz的晶振,其它主要是匹配电路应用的无源器件。发射、接收和唤醒部分的匹配电路均采用单端输出和输入的结构,便于研发调试和外围器件的成本控制。接收和发射共用一个微波天线,通过一个PIN微波二极管来控制收发的切换。微波天线具有圆极化的特性,方向性较强,应用普通PCB板材实现的PCB板上印制微波天线,大幅降低了成本。


图3: 应用BK5822实现的ETC OBU系统框图
主控MCU通过SPI来控制射频收发器BK5822,从而实现整个OBU的功能。BK5822提供一个最高速率可达8MHz的SPI接口,它由四根信号线组成,分别为MOSI、MISO、CLK和CSN。通过SPI接口,用户通过读写寄存器的方式进行数据传输和控制。

  实际应用 BK5822实现的OBU,在程序初始化后,一般来说,只是通过两个中断信号触发MCU之后,才与BK5822进行数据传输。一个中断信号为唤醒中断,另一个为IRQ中断。IRQ的中断信号在接收到数据或发射完数据后产生。具体MCU和BK5822的交互流程图如图4所示。


图4: MCU和BK5822交互流程图

关键字:ETC  射频收发器  不停车收费  车载单元 引用地址:基于国标ETC射频收发器的应用系统设计

上一篇:一种极高频带利用率的无线传输数字调制设计
下一篇:UHF RFID系统测试的挑战

推荐阅读最新更新时间:2024-05-07 16:24

借助差分接口改善射频收发器设计性能
简介 传统收发器设计中,50 Ω单端接口广泛用于射频和中频电路。当电路进行互连时,应全部具有匹配的50 Ω输出和输入阻抗。然而在现代收发器设计中,差分接口常用在中频电路中以获得更好的性能,但实际设计过程中,工程师需要处理几个常见问题,包括阻抗匹配、共模电压匹配以及复杂的增益计算。了解发射机和接收机中的差分电路对优化增益匹配和系统性能很有帮助。 差分接口优势 差分接口有三大主要优势。首先,差分接口可抑制外部干扰和接地噪声。其次,它可以抑制偶次阶输出失真。这对于零中频(ZIF)接收机非常重要,因为出现在低频信号中的偶次阶成分无法滤除。第三,输出电压可达到单端输出的两倍,从而将给定电源上的输出线性度提高6 dB。 本文论述三种情况下
[模拟电子]
借助差分接口改善<font color='red'>射频</font><font color='red'>收发器</font>设计性能
高速路:电子不停车收费在我国发展与应用
  相信大家对于高速公路收费站排着长长的车队的情景都不陌生,这种情况的发行不是一时一地的,而是一个普遍的现象,那么,造成这种现象的原因是什么呢?   现在我国高速公路收费方式主要分为三种,人工收费,半自动收费,电子不停车收费。其中,人工收费为现阶段最为主要的收费方式,也正是因为这种收费方式导致了上述情况的发生。   每辆车从收费站驶过,停车、缴费、启动,这个过程虽然不算漫长,只是需要十几秒左右的时间,这点时间对于一辆车来说不算什么,但是很多车辆的时间累计起来就是一个很可观的数字,这无疑大大影响了效率,对于高速公路的通畅产生了极大的影响,引起交通阻塞,甚至造成严重的经济损失。   而半自动收费相比之下就要进步很多了,车辆行驶过
[安防电子]
TI 集成MSP430与RF收发器的单芯平台
  2008 年 11 月 13 日,北京讯- 日前,德州仪器 (TI) 宣布推出全新 CC430 技术平台,该平台既可降低系统复杂性、将封装与印刷电路板尺寸缩小 50%,又可简化 RF 设计,从而将包括 RF 网络、能量采集、工业监控与篡改检测、个人无线网络以及自动抄表基础设施 (AMI) 等在内的应用推向前所未有的水平。   集两种技术之所长的单芯片   TI MSP430F5xx MCU 与低功耗 RF 收发器的结合可实现极低的电流消耗,从而使采用电池供电的无线网络应用无需维修即可工作长达 10 年以上。此外,微型封装所包含的高级功能性还可为创新型 RF 传感器网络提供核心动力,以向中央采集点报告数据,如通过分析大气中
[单片机]
TI 集成MSP430与<font color='red'>RF</font><font color='red'>收发器</font>的单芯平台
本土半导体企业研发榜:博通与汇顶科技成风口上的双雄
芯片股迎来年中报发布期间,众多芯片企业交出了自己上半年成绩单,在这些成绩单中,如果以净利润增长来做考量标准,将会有半数企业不合格,包括兆易创新、四维图新、国科微、富瀚微等众多企业,净利率增长通通为负。但不同于学生考试,衡量一个科技企业是否优秀的标准不止净利润一个,京东方的崛起也是每年都在亏钱,所以,我们从另一个角度——研发投入,来看本土半导体企业这半年都经营的怎么样。 半导体研发投入榜 从研发投入来看,大部分芯片设计企业的研发占比都在10%的水平线以上,像国科微与四维图新这两个企业的研发投入更是达到了40%以上。 在这份榜单中,国科微、四维图新、富瀚微、耐威科技、与兆易创新的净利润都是呈下降趋势的,这其中很重要的一个
[嵌入式]
本土半导体企业研发榜:博通与汇顶科技成风口上的双雄
恩智浦率先在汽车收发器中实现同步多通道数据接收
中国上海,2013年8月15日讯 — 基于其在汽车电子行业的领先地位和致力于发展互联移动的承诺,恩智浦半导体(NXP Semiconductors N.V.)(纳斯达克代码:NXPI)今日宣布推出NCK2983——一款低功耗多通道双向射频收发器,内置微处理器,独树一帜地具有并行接收最多三路通道的功能,而非顺序接收。该器件适合用于汽车钥匙和车身控制模块类应用,包括无钥匙系统、远程启动、胎压监控系统(TPMS)和无线诊断(WD)。 现有的多通道收发器只能依次顺序轮询每个通道的信号,以便检查应用可能用以传输信号的所有潜在频率。NCK2983器件可同时接收三路通道,缩短了轮询时需要“唤醒”的周期长度,极大地降低了系统功耗,同时提升
[嵌入式]
ETC中具有车型识别功能的车辆检测器设计
摘要:介绍了专门用于ETC(不停车收费系统)中一种车辆检测器的软硬件设计方法。根据车辆检测器应用环境的特点给出了基准频率校正算法,可以对基准频率进行实时校正。并采用模糊模式识别算法进行车型识别。 关键词:车辆检测器;基准频率;频率校订;模糊模式识别 0 引言 随着经济的发展,不停车收费系统(ETC)已在我国悄然兴起。不停车收费系统主要是由通讯、监控、收费三大系统组成。整个系统可靠运行的一个重要环节就是车辆检测器。在不停车收费系统中它是检测驶向通讯区域的车辆并命令天线进行通信的传感器,具有进入检测、车速检测、车型判别等功能;它是检测出离开通信区域的车辆、根据ETC车道控制器的判断控制栏杆、路侧显示器的传感器,具有进入检
[应用]
STM32CubeMX生成F1的工程中提示找不到 __HAL_TIM_SetCompare 问题
1. 问题描述 在用STM32CubeMX生成 STM32F103C8T6 的MDK工程后,在main.c中更改定时器占空比计数值的时候,报错: 总之就是HAL库内部API函数__HAL_TIM_SetCompare找不到。 2. 解决方案 经过搜索,该函数在stm32_hal_legacy.h文件中: 所以出错原因肯定是:调用此函数的时候没有包含进来这个头文件,再次通过文件名查找: 果然,包含此头文件需要定义宏USE_HAL_LEGACY。 在它前面define一下: 重新编译,问题解决成功! 这样添加之后,重新使用STM32CubeMX生成工程后,代码会被自动覆盖,需要重新添加!
[单片机]
STM32CubeMX生成F1的工程中提示找不到 __HAL_TIM_S<font color='red'>etC</font>ompare 问题
ETC车载电子标签(OBU)的芯片和方案选型
OBU英文全称是On Board Unit,指的是车载电子标签(OBU),市面上常见的名称是粤通卡ETC、ETC速通卡、ETC苏通卡等。车载电子标签(OBU)是ETC(Electronic Toll Control,不停车电子收费系统)的重要组成单元,存有车辆的识别信息,多安装于汽车的前挡风玻璃上,在收费站与RSU(Road Side Unit,路侧单元)通过专用短程微波通信(DSRC)进行通讯。当车辆靠近档杆,RSU识别到来自OBU的信号,就会自动打开档杆,在不需要司机停车的情况下自动完成收费处理全过程,提高车辆通行效率。 图1、ETC系统组成 RSU安置在ETC车道上作为路侧基站使用,主要由通信收发信机、RSU天线控制板、
[嵌入式]
<font color='red'>ETC</font><font color='red'>车载</font>电子标签(OBU)的芯片和方案选型
热门资源推荐
热门放大器推荐
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved