如今,数字放大器技术正在改变消费类音频产品市场。但说起六年前,它还是一项新技术,当时希望采用该技术的制造商面临三项主要难题。
首先,信号通路(signal path)改变了架构。数字放大器的输入是脉冲编码调制(PCM)信号,输出是高压脉宽调制(PWM)信号。这就要求数据通路从以模拟为中心向全数字转变。其次,数字放大器通过MOSFET H桥将功率引入扬声器,取代了线性AB类放大器。最后也是最棘手的一个障碍,是通常(并非一定)要采用开关电源(SMPS)替代线性稳压电源。
数字放大器从电源获得30至40V的信号,直接将其传输至扬声器,并以数百kHz的频率对信号进行调制。通过改变该电压的占空比(脉宽),声音就得到还原。该电压通过4个配置成H桥的MOSFET通过扬声器。这些MOSFET不是全导通就是全关闭,所以仅产生有限的热损耗。数字放大器一般没有反馈,并直接将电源电压传递至扬声器,所以与带反馈的系统相比,数字放大器需要更好的电压调节。
采用开关电源和数字放大器进行设计时,遵从右文列举的一些指导原则,可避免许多常见问题,同时还能缩短开发时间。
应该
1.采用开关电源。与线性电源相比,开关电源体积较小,重量较轻,并具有更好的成本/功率和成本/容量比。但它也存在不足之处,如增加了电磁干扰(EMI)、复杂度提高以及不同的负载处理曲线。这些问题能够获得解决,但需要采用一些新技术。
2.留意系统布局及由开关电源的开关产生的较高EMI。较高电压需要遵从某些设计规则,并获得相关管理部门的批准。
3.检查短期和长期功率。若一个音频信号具有较高波峰系数,则意味着峰值可能很高,但平均功率远低于峰值。最坏的情况是,在全功率条件下的平均音频功率约为全功率的1/8。例如,在一个每声道能输出100W功率的5.1声道家庭影院中,所需的平均功率为600W/8=75W。开关电源的效率约为80%,所以若电源能提供100W功率,则系统可很好工作。美国联邦贸易委员会(FTC)要求:在所有声道以1/8的功率预热1小时后,其中两个声道必须以全功率驱动5分钟。
4.只要有可能,就采用现成的开关电源。在数字电视、DVD接收机和播放机中一般采用开关电源。因其出货批量大,近年来开关电源的成本已大幅下降。
5.降低开关电源的源阻抗。数字放大器与模拟放大器的其中一项区别,是数字放大器具有开环架构。开关电源的源阻抗与数字放大器的整体谐波失真构成直接比例关系。解决该问题的最佳途径是使开关电源尽可能靠近数字放大器板,并在PCB上采用较宽的电源走线及低口径的电源线。
图:开关电源与线性稳压电源的输出电压/输出电流比较
不应该
1.假定数字放大器是EMI的元凶。在与客户打交道的过程中,几乎每个客户报告的EMI问题都不是由数字放大器引起的,而是要归结于开关电源。若遵守了提供的参考布局,就能把数字放大器产生的EMI降得很低,特别是对大电流信号通路来说。
2.忘记过载处理方法的差异。开关电源与线性电源的过载处理方法不同。线性电源的变压器具有阻抗。随着变压器绕组内电流的增加,产生的IR降导致输出电压降低,并使变压器发热。通常在变压器内整合一个热传感器,以此避免永久失效。而开关电源具有不同的保护机制。当电流负载增加时,电压的降低过程要平缓地多。但是,一旦达到电流或热容限,立即进入关断模式。只要能准确找出过载部位,这就不会成为一个问题。
3.过多关注电源调整。因数字放大器是开环的,所以它们的电源抑制比(PSRR)较线性放大器低。一般来说,调整率低于5%的开关电源都能很好地满足大多数设计的要求。当没有音频信号输入时,PSRR=20×Log(Vout(f)/Vinjected(f)。这是因为,当没有音频信号输入时,TI的数字放大器输出是静音的,所以可获得无限大的PSRR。但通常输入一个1kHz的音频信号,然后测量该输入信号的输出功率。
上一篇:用数字荧光示波器对开关电源功率损耗进行精确分析
下一篇:数字电源能否取代模拟电源?
推荐阅读最新更新时间:2023-10-12 22:39
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- Waymo打造最大弱势道路使用者交通事故数据集 可帮助指导自动驾驶系统研发
- 车载显示,大步向前
- 新专利:未来福特汽车或将配备亮度管理系统
- 科学家研发基于AI的身份验证工具 可保护车辆免受网络攻击威胁
- Microchip推出广泛的IGBT 7 功率器件组合,专为可持续发展、电动出行和数据中心应用而设计
- 面向未来驾驶体验 博世推出新型微电子技术
- 英飞凌与马瑞利合作 利用AURIX™ TC4x MCU系列推动区域控制单元创新
- 5C超充,该怎么卷?
- 《2025年度中国汽车十大技术趋势》正式揭晓!你最看好哪个?
- Microchip推出新型VelocityDRIVE™软件平台和车规级多千兆位以太网交换芯片,支持软件定义汽车