采用光电耦合器可变高压电源电路设计

最新更新时间:2014-11-15来源: 互联网关键字:光电耦合器  电源电路设计 手机看文章 扫描二维码
随时随地手机看文章

  现在有很多固定电压开关模式电源(SMPS),将几个这样的电源串联起来还可实现更高的固定电压。为了从SMPS或基于传统变压器的电源获得可调输出,需要用到线性调节器或开关模式降压转换器。对于降压转换器,可使用MOSFET或IGBT作为开关元件。通常,高侧开关会使用自举IC或脉冲变压器。市场上很少有驱动MOSFET的光电耦合器。由于它们无法提供足够的电流来对栅极电容快速充电,这些光电耦合器主要用于驱动低频MOSFET开关,例如固态继电器。

  电路原理:开关稳压器中使用了光电耦合器(VOM1271),该耦合器具有一个内置的快速关断器件。如果将200pF栅极电容连接至IC2,则开关时间(ton与toff)分别为53μs和24μs。有鉴于此,降压转换器选择了2kHz的开关频率。此处选用了德州仪器(TI)的TL494(IC1)作为脉冲调制控制器。考虑到栅极阈值电压(VGS(th))、总栅极电荷(Qg)、漏源电压(VDS)及漏极电流(ID)等因素,本例使用了AOT7S60 MOSFET作为开关元件。由于VOM1271能够提供约8.4V的电压,VGS(th)应远低于该值;Q1的VGS(th)为3.9V,当电压为8.4V时,可实现良好的导通性能。IC2无法提供更多电流(通常为45μA)。为确保开关速度并降低开关损耗,栅极电荷应保持低值。MOSFET的Qg为8.2nC。在根据图所示进行整流和滤波后,采用降压线路变压器输出测试降压转换器。输出电压通过可变电阻器R1在5V~70V范围内连续可调。

关键字:光电耦合器  电源电路设计 编辑:探路者 引用地址:采用光电耦合器可变高压电源电路设计

上一篇:采用555集成电路的简易光电控制器电路设计
下一篇:一种位置自由的低功耗无线充电系统电路设计

推荐阅读最新更新时间:2023-10-12 22:48

串联调整稳压电源电路设计
  图1是使用晶体三极管的输出电压可调的稳压电源。该电路是通过改变与负载串联的大功率晶体三极管Tr1的管压降来调节输出电压。输出电压Vout由A点的电压,即Vref+VBE2决定。   式中Vref是稳压二极管的电压(5.1V),VBE2是晶体三极管Tr2基极发射极间的电压(0.65V ,VR1是可变电阻。由于VR1的阻值变化范围是0~5kΩ,所以输出电压的变化范围为 7.6~12.8V。当VR1的滑动部分接触不良时,输出电压会变为最小电压。   Vout=(R3+VR1+R4)*(Vref+Vbe2)/(VR1+R4)   调整管Tr1的最大消耗功率为3A×(15V-8V)=21W,所以应安装在4℃/W以下的散热器上。由于VBE
[电源管理]
串联调整稳压<font color='red'>电源</font><font color='red'>电路设计</font>
光电耦合器的三种检测方法
光电耦合器——又称光耦合器或光耦,它属于较新型的电子产品,现在它广泛应用于计算机、音视频……各种控制电路中。由于光耦内部的发光二极管和光敏三极管只是把电路前后级的电压或电流变化,转化为光的变化,二者之间没有电气连接,因此能有效隔断电路间的电位联系,实现电路之间的可靠隔离。 光电耦合器的检测: 判断光耦的好坏,可在路测量其内部二极管和三极管的正反向电阻来确定。更可靠的检测方法是以下三种。 1. 比较法 拆下怀疑有问题的光耦,用万用表测量其内部二极管、三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。 2. 数字万用表检测法 下面以PC111光耦检测为例来说明数字万用表检测的方
[电源管理]
<font color='red'>光电耦合器</font>的三种检测方法
一款基于电容的电磁全隔离直流电源传输电路设计
高性能的电子电路要求高度洁净的电源。然而目前在供电线路上的各种电器设备会产生许多高次谐波,对供电质量造成影响。开关型稳压 电源 以及DC-DC变换器都在输入回路中采用开关管作为斩断电流的器件。高频变压器把脉动的电流信号由初级回路传输到次级回路,再通过采样反馈到初级,实现稳压调节。在典型的电源电路中,尽管输入端与输出端不共地,但高频变压器作为电磁耦合通道,其传递函数有一定的频率选择性。输入端电源窄脉冲干扰含有十分丰富的频率分量,会耦合到输出端,使电源的供电质量下降,存在使微机程序跑飞的可能性。 本文提出了一种基于 电容 的全隔离直流电源传输电路,它依靠几组电容存储电荷来实现传输电能。由于电路输入、输出端不存在电磁耦合通路,电路实现了
[电源管理]
一款基于电容的电磁全隔离直流<font color='red'>电源</font>传输<font color='red'>电路设计</font>
开关电源的一款尖峰吸收电路设计
为了防止 开关电源 ( 开关电源 是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源, 开关电源 一般由脉冲宽度调制(PWM)控制IC和MOSFET构成)系统中的高速开关电路存在的分布电感与电容在二极管蓄积电荷的影响下产生浪涌电压与噪声。文中通过采用RC或 LC吸收电路 对二极管蓄积电荷产生的浪涌电压采用非晶磁芯和矩形磁芯进行磁吸收,从而解决了开关电源 浪涌电流 的产生以及抑制问题。 引言 开关电源的主元件大都有寄生电感与电容,寄生电容Cp一般都与开关元件或二极管并联,而寄生电感L通常与其串联。由于这些寄生电容与电感的作用,开关元件在通断工作时,往往会产生较大的电压浪涌与电流浪涌。 开关的通断与二极
[电源管理]
开关<font color='red'>电源</font>的一款尖峰吸收<font color='red'>电路设计</font>
东芝电子欧洲公司推出10款车用光电耦合器
据外媒报道,东芝电子欧洲公司(Toshiba Electronics Europe)推出了10款符合AEC Q101标准的光电耦合器,该产品可被用于车用隔离件、接口、转换器等设备中,其能满足日益严苛的性能及形状参数等要求。 TLX9304、TLX9378和TLX9376三款产品均为集成电路输出型光电耦合器(IC output photocouplers),其采用了SO6超薄封装,数据传输速率分别为1Mbps、10Mbps和20Mbps。TLX9300和TLX9185A晶体管输出(transistor output)型光电耦合器及TLX9905和TLX9906光电耦合器同样采用了SO6封装。TLX9000与TLX9291A晶体管
[汽车电子]
东芝推出低高度封装轨对轨输出栅极驱动光电耦合器
东京—东芝公司(TOKYO:6502)今天宣布推出采用低高度SO6L封装的轨对轨输出栅极驱动光电耦合器,用于直接驱动中低等功率绝缘栅双极晶体管(IGBT)及功率金属氧化物半导体场效应晶体管(power MOSFET)。量产出货即日启动。 新款光电耦合器包括用于驱动小功率IGBT的“TLP5751”和用于驱动中等功率IGBT的“TLP5752”及“TLP5754”,它们均采用低高度SO6L封装。与采用DIP8封装的东芝产品相比,新产品的高度仅为前者的54%,安装面积仅为前者的43%,有助于开发更纤薄小巧的装置。尽管高度较低,但新产品依然保证了8mm的爬电距离和5kV的绝缘电压,适用于对绝缘规格要求较高的应用。
[传感器]
东芝推出低高度封装轨对轨输出栅极驱动<font color='red'>光电耦合器</font>
电源模块防浪涌电路设计思路解析
由于电源模块应用的场合也越来越广,应用场合错综复杂,电源模块的输入端时常会伴随浪涌冲击,若超过本身模块能抗的浪涌电压,模块会损坏失效,导致系统的异常,为保证系统的可靠性,电源的前端防浪涌电路如何设计? 一、浪涌电压来源 1、雷击引起的浪涌,当发生雷击时,通讯电路会产生感应,形成浪涌电压或电流; 2、系统应用中负载的切换及短路故障也会引起浪涌; 3、其他设备频繁开关机引起的高频浪涌电压。 据某些权威机构报道,一年之中发生的浪涌电压超过应用电压一倍以上的次数就高达800余次,电压超1000V以上的就有300余次,这是一个相当大的数据,平均每天就有两次,所以浪涌防护电路是必不可少的。 二、电源为何需要浪涌
[电源管理]
<font color='red'>电源</font>模块防浪涌<font color='red'>电路设计</font>思路解析
基于MAX8570的OLED电源偏置电路设计
引言 OLED(有极发光二极管),也称为OEL(有机电致发光器件)。这种器件具有自发光、清晰亮丽、轻薄、响应速度快、视角宽、低功耗、成本低廉、制造工艺简单等特点,问世以来一直被视为是继LCD之后最看好的显示器。目前,在蜂窝式移动电话、个人助理(PDA)、数码相机等领域中,OLED得到了广泛的应用,但是OLED对电源偏置电路的要求非常严格,一般需要效率高、体积小、重量轻的升压变压器,这种升压变压器还应具有良好的电磁兼容性。 MAX8570是MAXIM公司推出的OLED升压变压器专用芯片。它不仅设计先进、功能完善、而且外围电路简单、使用非常灵活、是目前设计OLED电源偏置电路的一种理想器件。 MAX8570变换器的特
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved