新一代高效率移动电源设计

最新更新时间:2014-05-18来源: 互联网关键字:高效率  移动电源设计 手机看文章 扫描二维码
随时随地手机看文章
随着智能移动设备性能的不断提升,电池越来越不堪重负,移动电源产品随之发展壮大,此外,用户需求的提升也要求产品朝着灵活设计的方向发展。目前市场上的锂电池充电管理IC 大多为1A线性充电,其缺点表现为:1A的线性充电温度很高、片上热阻损耗严重,导致线性电池充电管理IC的电流很难做到2A,即使通过外扩MOS做到 2A,温度也比较高,而且转化效率在70%左右,因此,开关充电就显得非常必要。目前市场上对锂电池充电管理IC的需求主要是:2A~3A大电流集成MOS、开关式效率达到90%以上,以及低温充电管理IC。另外,多功能的集成芯片越来越受欢迎,包括开关充电管理、电池电量检测显示、同步升压输出限流等功能集成于单一芯片之上成为当今的发展趋势。

  集成多功能,低成本更可靠

  “三合一”、“五合一”芯片受到市场欢迎。ZS6366即是一款应用于移动电源,集成了开关锂电池充电管理、同步升压输出限流、电池电量检测显示、LED手电筒及按键控制为一体的便携式电源管理IC。它以开关方式进行充电,集成了包括涓流充电、恒流充电和恒压充电全过程的充电方式,浮充电压精度在全温度范围可达±1%,并且具有充电电流温度低,充电效率高等优点,配合适当的外围器件可以达到2A甚至更高的充电电流。

  在充电状态下,如果输出USB同时接了负载,ZS6366的动态路径调整功能会智能分配输入电流优先提供给负载,如果负载电流增大,则会自动关闭充电,待负载充电电流逐渐减小到一定值时再打开电池充电,有效地限制了输入电流,防止损坏供电的适配器或者USB。同时也可以通过按键切换充电或放电。

  ZS6366的DC-DC升压可达到±1%的精度,可以提供高达90%以上的升压转换效率,同时具有精确的升压限流功能。ZS6366 配置了4个LED恒流驱动端口,智能显示电池电量,芯片内置逻辑锁定功能,防止电量指示的状态不稳,同时集成了电池真实电压追踪技术,跟踪电芯内部真实电量,防止充放电造成的电压偏差。另外,ZS6366具有多重保护设计,包括负载过流保护、短路保护、软启动保护等,同时芯片端口设计了高性能的ESD保护电路,使得该款芯片具有极高的可靠性。电池放电在2.9V时关断,有效保护和延长电池充放次数和寿命。 基于ZS6366的应用实例

  ZS6366采用同步降压方式来对锂电池进行充电,此做法的好处是可以将转换效率提升至90%以上,并且能很好地规避线性管理IC的温度高、电流无法做大的问题。而在充电功能、升压功能及保护功能上都做了非常好的优化,在做到快速充电的同时,提高了可靠性,降低了成本。图1为基于ZS6366的典型应用方案的系统框图,图2为充电过程中的状态转换示意,图3是一个典型应用的电路图。

  图1:ZS6366芯片系统框图

  图2:状态转换图

1 开关充电

  在充电过程中,ZS6366用开关方式对电池进行涓流/恒流/恒压三段式充电。当电池电压低于3V时进行涓流充电;当电池电压高于3V时进行恒流充电;当电池电压接近4.2V时进行恒压充电,此时充电电流开始逐渐减小,当电流减小到恒流充电电流的1/10时,4个LED灯全部常亮,指示电池已经饱和。这时,芯片可选择电流进一步减小到零,维持浮充电压;或者终止充电,等待电池电压降低到一定电压(VRECHG)时进行复充(Recharge)。

  充电时,对电池充电的电流大小由芯片的SNS引脚和BAT引脚之间的采样电阻RS来设定。恒流充电电流ICharge由下式决定:

  涓流充电电流为ICharge的1/8,充满判断电流为ICharge的1/10

  电流的瞬时增大会对电池造成伤害,当电池直接进入恒流充电时,ZS6366会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种问题。

  另外,ZS6366具有动态路径调整功能,保证了USB端负载的优先供电。如果充电过程中,输出USB同时带有负载,ZS6366会控制系统给电池充电同时供电给负载;如果VCCS》3.7mV,ZS6366会控制系统优先供电给负载,同时逐渐减小充电电流直到不充电,让全部输入电流供给负载,同时达到了输入限流的效果,如果VCCS《3.2mV,芯片会控制恢复充电。

  2. 同步升压

  此方案具有同步升压功能,可将单节锂电池2.9V ~4.2V之间的电压升压到5V输出,给负载供电。电池电压低于2.9V时,芯片系统将判断为电池电量不足,停止升压。当VIN电压低于3.3V时,系统将判断为电源适配器掉电,并启动升压电路。

  升压时,ZS6366通过CS和CSN检测负载电流,如果负载电流逐渐增加,到达限流值时输出电压会下降,直到不升压(同步整流PMOS常开)。限流值的计算:

  同时要满足:

  直观地讲,充电电流和升压电流是相关的,如果充电电流设定为1A,在电池电压最低的情况下升压,升压时最多能输出1A左右的电流。如果想增大升压输出电流,则充电电流也要相应增加。

  另外,ZS6366还具有放电过流保护和短路保护功能,负载电流超过限流电流继续增大,直至CS与CSN两端的压差超过60mV,且维持时间超过1s,则系统启动负载过流保护功能,芯片关闭USB的输出通路,进入待机状态。 3 保护

  此方案拥有多种保护功能,可保障器件的正常工作。保护功能包括:充电USB短路保护、升压USB短路保护、二级短路保护和USB过压保护等功能。

  充电USB短路保护:当充电时USB发生短路,芯片会关闭USB输出,熄灭电量指示灯,同时继续为电池充电;短路解除后,短按按键可以解除短路保护状态,USB输出打开,电量指示灯亮起,16s后恢复充电。

  升压USB短路保护:当电池升压时,USB发生短路,芯片会关闭升压,进入待机状态;短按按键可以解除短路保护状态。

  二级短路保护:在某些极限状态下发生USB短路,芯片检测不到短路状态,但仍然可以关闭USB输出,短路解除后会自动恢复原来状态,保护器件不被损坏,电池端也不会出现大电流,保护IC不会保护。

  USB过压保护:输入电压过高,超过6V时,芯片会控制关闭USB输出,防止接在USB的便携设备因为过压而损坏,指示灯闪烁,提示输入电压异常,充电仍然正常进行。输入电压正常后状态解除。

  4. 系统其他控制功能

  当一个灯以4Hz频率开始闪烁时,表示系统内部电池电量不足(即电池电压已经低于2.9V),需要充电,这时升压系统已经关闭,LED灯闪烁4s后,系统进入待机状态。

  在无电源的情况下,短按按键,启动5V升压系统给负载供电,同时LED灯显示当前电量,维持时间约为8秒钟,之后LED灯自动关闭,如果在8秒钟内灯没有熄灭的时候再一次短按手动开关,则灯会马上关闭。

  图3:典型应用电路图。

  设计的注意事项

  在设计过程中,电阻、电容、电感等元器件的选择对于系统的正常工作起着非常重要的作用。比如电阻,RS和RCS的精度影响采样电流的精度,因此推荐使用1%精度的电阻;对于封装,请根据电阻实际的功率计算,也可以用两个并联的形式分散热量。例如:RS在升压时流过电流最大为2A,则它最大功耗是2A×2A×0.04Ω=0.16W

  RFB1和RFB2的精度影响输出电压的精度,因此推荐使用1%精度的电阻,如担心虚焊的问题也可考虑RFB1采样两个电阻并联。

  总结

  ZS6366运用了比较新颖的拓扑结构,升压和降压用同一个电感,不但充电可以做到同步,还支持同步升压给手机充电,所以在1A~2A输入充电时效率和温度表现都很好,同时还集成了运算放大器,可实现精准电量指示,并提供过充过放、过压、过流、短路、限流保护等功能。

关键字:高效率  移动电源设计 编辑:探路者 引用地址:新一代高效率移动电源设计

上一篇:Protel DXP电路仿真流程与实例仿真分析
下一篇:解析一款可调直流稳压电源的电路原理图及工作原理

推荐阅读最新更新时间:2023-10-12 22:40

Power Integrations发布InnoSwitch3系列高效率(94%)离线 反激式开关电
Power Integrations公司(纳斯达克股票代号:POWI)今日发布InnoSwitch™3系列恒压/恒流离线反激式开关电源IC。新器件在任何输入电压及负载条件下均可提供94%的高效性能,将电源损耗大幅降低25%,并且可以设计出无散热片的紧凑型65 W电源。InnoSwitch3器件适合对能耗、外形尺寸或热约束提出严苛要求的电源,特别是那些必须符合强制性总能耗(TEC)标准的电源。 InnoSwitch3 IC产品系列针对三种特定应用提供三种版本: CE:外部电流。采用外部输出电流检测,可提供精确的恒流/恒压调整率,从而提高设计灵活性。适合仅有单一输出电压的紧凑型充电器、适配器、物联网和楼宇自动化应用。 CP:
[电源管理]
Power Integrations发布InnoSwitch3系列<font color='red'>高效率</font>(94%)离线 反激式开关电
采用3mm x 4mm 紧凑封装的高效率USB电源管理器和电池充电器
2007 年 4 月 10 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出独立型高效率电源管理器、理想二极管控制器和电池充电器 LTC4088 ,该器件用于便携式 USB 装置。 LTC4088 的前端开关拓扑具有 PowerPath TM 控制,这优化了通过 USB 端口获得电源以对电池充电,并以最低功耗为应用装置供电。这个特点有助于减轻空间受限的媒体播放器、数码相机、 PDA 、 GPS 单元和智能电话的热量管理问题。该集成电路还允许负载电流大于从 USB 端口吸取的电流,
[新品]
高效率太阳能逆变器的设计
从人类进入文明社会早期开始,我们的祖先就受益于太阳能,例如,进行照明、加热以及烹饪等。太阳使许多生态能量以生物的形式固定下来,以及通过天气,甚至风的作用施加影响。随着矿物燃料成本的逐步提高,美国社会正在促进太阳能的使用,如用于加热,特别是使用一流的、可靠的,可以接入输电网络中的太阳能电池光伏系统。   太阳能电池的作用从诞生一个多世纪以来,已经被人熟知,而且电池面板的普及应用也已经有半个多世纪了。太阳能电池面板由石英硅单元或者采用新型薄膜技术的单元组成。在民用照明系统中,太阳光通过电池面板转换成直流电,然后通过一个电子太阳能并网逆变器用于和电网互连。   与太阳能电池面板相比,逆变器由于本身固有的复杂性,被认为是系统中
[电源管理]
<font color='red'>高效率</font>太阳能逆变器的设计
高效率、更低BOM成本,瑞萨32位全新RX13T产品组问市
全球领先的半导体解决方案供应商瑞萨电子株式会社宣布推出32位微控制器(MCU)RX13T产品组,可对消费电子和工业应用中风机或泵用紧凑型电机进行高效逆变器控制,取代传统电机常用的开关类型控制。其中包括注重能效的工厂设备,如排水、供水泵和数据服务器的冷却风扇;以及需要较长运行时间的电池供电类家用电器产品,如电动工具、真空吸尘器等。 全新RX13T产品组集成了为单电机逆变控制而优化的丰富功能,减少芯片外设元件数量,并提供低引脚数封装,为电机控制带来了更高效率和更低BOM成本。 RX13T MCU是首批以32MHz运行并带有浮点运算单元(FPU)的MCU(注1),并传承RX产品家族所具备的强大功能,如逆变器控制计时器(MT
[嵌入式]
更<font color='red'>高效率</font>、更低BOM成本,瑞萨32位全新RX13T产品组问市
基于MAP9000高效率(>90%)可调光/无闪LED驱动设计方
 方案主要优势特点:   调光器兼容性高,无闪烁   功率偏差:±15%   电流变化:±6%   高功率因子: 0.95   较高的光效率: 90%   更低的总谐波失真: 20%   更高的电流驱动能力,高达180mA   采用6x6mm QFN封装12Leads   原理图:   AC Direct   可调光   无闪烁
[电源管理]
基于MAP9000<font color='red'>高效率</font>(>90%)可调光/无闪LED驱动设计方
高效率LED驱动电源设计全解
随着 led 生产成本下降,越来越多应用开始采用这类组件,包括手持装置、 汽车电子 和建筑照明等。LED拥有高可靠性、良好效率和超快响应速度,所以很适合作为照明光源。虽然白炽灯泡的成本很低,更换费用却可能很昂贵。街灯就是很好的例子,更换一个故障灯泡往往需要出动多位人员和一辆卡车。也因为如此,尽管LED和白炽灯泡的效率大致相等,许多街灯却采用可靠性更高且更省电的LED。   白炽灯虽能发出连续光谱,却常用于交通号志等只需绿光、红光和黄光的场合。这类应用须在白炽灯外加装一个特定颜色的滤片,但它会造成六成的光能浪费。LED则能产生特定颜色的光,而且只要接通 电源 即可立即发亮,不像白炽灯需要200ms的反应时间,因此汽车产业早就
[电源管理]
<font color='red'>高效率</font>LED驱动<font color='red'>电源设计</font>全解
多功能随身移动电源设计方案
  本文设计了一种多功能、高效、低功耗、安全的随身移动电源,以满足户外需求,将有很大的实用价值。   本文论述的电路系统设计由五部分组成:锂芯容量指示电路、电芯保护电路、充电管理电路、DC-DC升压电路和功能扩展电路。   多功能随身电源的系统设计   锂芯容量指示电路由XC61CC系列的电压监控芯片组成。电芯保护电路由过充保护、过放保护、过温保护三部分组成,HAT2027、R5402、自恢复保险丝构建了三重保护,使锂芯安全性大大增强。充电管理电路采用了CN3066,将充电过程分为涓流充电、恒流充电、恒压充电和维护充电四个部分,使移动随身电源能够最大程度地储备能量。DC-DC升压电路采用了MAX1771集成芯片,可将锂
[电源管理]
多功能随身<font color='red'>移动</font><font color='red'>电源设计</font>方案
多核环境中的高效率调试方法
  毫无疑问,多核多线程是未来处理器的发展方向。回首处理器的发展历程,并行技术从指令级的超标量发展到线程级的超线程或者并发多线程,再到今天处理 器级的多内核,总的趋势都没有改变。英特尔、Sun和IBM等大公司目前已经投身到多核或者多线程技术的浪潮之中。当今的网络应用日趋复杂,对性能的要求 不断提高,无论是需求推动技术,还是技术激发了新的需求,并行技术都将是未来信息基础设施建设的必然选择。   对于嵌入式装置而言,多核技术可以提供更高的处理器性能、更有效的电源利用率,并且占用更少的物理空间,因而具有许多单核处理器无法具备的优势。与多核解决方案如影随形的,就是多处理器技术,也就是在同一块电路板或同一个集成系统中包含多个处理器。
[工业控制]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved