一种基于555时基芯片的高频逆变电源的设计与实现

最新更新时间:2014-05-25来源: 互联网关键字:555时基芯片  高频逆变电源 手机看文章 扫描二维码
随时随地手机看文章

  氙灯作为一种高功率强光源,有着广泛的用途,其主要原理是通过光源内部的高频逆变电路,为高压氙灯提供稳定的高压电源。文中设计了一个高频逆变电源电路用以实现同样的功能。

  电路结构与原理

  1.1 555单稳电路

  555单片机时基电路是一个高度稳定的控制器,能产生精确的时间延迟或振动的条件。在时间延迟模式的运作,时间是由一个外部电阻和电容精确控制的。在一个稳定的操作中,振荡器、自由运行频率和责任周期都是由两个外部电阻和一个电容精确控制的。电路可以被下降的波形触发与重置。

  将555电路的6,7脚并接起来接在定时电容C上,用2脚作输入就成为脉冲启动型单稳电路。电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,如图1所示。下面分析它的工作原理:

  (1)稳态:接上电源后,R=1,S=1,输出Vo=0,D端接地,C上的电压为0即R=0,输出仍保持Vo=0,这是它的稳态。

  (2)暂稳态:输入负脉冲后,输入S=0,输出立即翻转成Vo=1,D端开路,电源通过RA向C充电,暂稳态开始。经过时间TD后,C上电压上升到大于 2/(3VCC)时,输入又成为R=1,S=1,这时负脉冲已经消失,输出又翻转成Vo=0,暂稳态结束。这时内部放电开关接通,D端接地,C上电荷很快放到零,为下一次定时控制作准备。电路的定时时间TD=1.1RAC。这两种单稳电路常用作定时延时控制。

  1.2 电路原理

  根据555芯片设计了电源电路,并画了PCB板图进行实物焊接。焊接完成后,进行实际调试过程中不断出现一些问题,如变压器T1刚开始只能够输出预想电压的一半(350~450 V);还有功率管经常在接上电源数分钟后就会发烫,检测后发现是震荡频率不够,减小其左边电感L1即可。在调试过程中,经过不断修改完善,最终达到预想功能。图2为电路原理图。

  电路中,U3和U5都采用NE555D芯片。其中U3采用555单稳电路,U5则为555多谐振荡电路,U5的输出端(3脚)为U3提供周期性矩形脉冲。整个电路通过U3产生的脉冲调制信号来控制Q4的导通与截止。从而实现Q1的导通与截止。从而在变压器T1中第1脚和2脚之间的绕组之间产生了交变的电流信号,再通过变压器的电压变化实现960 V和120 V的交流电压输出。再通过同步脉冲控制C19的充电和放电实现变压器T2的二次升压实现输出7000 V的交流信号输出。最后960 V和7 000 V的输出电压通过耦合电路对高压氙灯进行点火。

  图3为电路实物图。

  频率计算公式:

  f=1/(1.1RC)

  占空比计算公式:

  q=(R1+R2)/(R1+2R2)

  经实际调试,得到占空比为3/4;频率为104Hz。

  1.3 电路模块分析

  图 4中,R25为限流电阻,R23为Q6的e极和b极间偏置,R10为Q5的e极和b极间偏置;C26及C25起抗干扰作用;电路工作原理为当Q5的b极得到D2送来的电压,Q5导通;此时产生Ic5,并且向Q6提供Ib,则Q6的c极便有Ic6,则Ic6为Q5提供b极电流,完成Q5与Q6轮流导通,使 R25右端电压为0 V,此时D11将G极的电压设定为0.7 V。R24,THC1为降压电阻和热敏电阻;其作用为温度传感元件。实现功率管Q1过热的保护信号。

  图5为电路转换模块,其中Q4及SCR1构成同步电路。对于Q4,当同步脉冲信号到来时使Q4导通,则关闭了Q1的驱动脉冲。对于SCR1:构成C19和 T2连接电路的充放电控制。当同步信号到来时,有C17将脉冲耦合到SCR1的触发端,实现SCR1的导通,将C19进行放电。同步脉冲信号的作用是使电源停止工作,同时完成C19的放点控制。无后步脉冲时电源工作,对C19充电(由D4完成)。

  电路稳压模块通过采样电路(R14,R15,R16,R17,R30)电阻的分压,将采样电压反馈到电压比较器U2B(LM358D)的同向输入端与U1(TL4 31)产生的基准电压进行误差放大,从而实现稳压输出960 V和120 V的目的。如图6所示。

  由T2得到的7 000 V电压与T1输出的960 V电压进行耦合点火,以点亮高压氙灯。如图7所示。

  逆变电源变压器

  在整个电路中,起核心作用的便是变压器T1。通过它才能得到960 V的电压输出。在本文中,变压器T1需将12 V输入电压变压为120 V和960 V的输出电压。如图8所示。

  图8(a)中:从上到下,按逆时针顺序,引脚分别为1~9脚。11线并绕,从5脚进,7脚出,逆时针绕17圈,线径为0.11 cm。从3脚进,2脚出,逆时针,11圈,线径为0.16 cm。从1脚进,绕78圈,从8脚出来,逆时针,线径为0.11 cm。从8脚进,绕452圈,9脚出线,逆时针,线径为0.11 cm。要求8脚和9脚引出的线要保持足够间距,避免产生火花。

  结语

  采用基于555时基芯片的高频逆变电源电路,设计并实际制作出了一款简便实用的便捷式氙灯照射器。文中对电源电路进行了设计,并在调试工程中进行了多次修改改进,使照射器工作趋向于稳定可靠,增加其用途广泛性。 

关键字:555时基芯片  高频逆变电源 编辑:探路者 引用地址:一种基于555时基芯片的高频逆变电源的设计与实现

上一篇:基于逆变电源开关电源设计
下一篇:基于ATmega8 单片机控制的正弦波逆变电源

推荐阅读最新更新时间:2023-10-12 22:40

一种基于555芯片高频逆变电源的设计与实现
  氙灯作为一种高功率强光源,有着广泛的用途,其主要原理是通过光源内部的高频逆变电路,为高压氙灯提供稳定的高压电源。文中设计了一个高频逆变电源电路用以实现同样的功能。    电路结构与原理   1.1 555单稳电路   555 单片机 时基电路是一个高度稳定的控制器,能产生精确的时间延迟或振动的条件。在时间延迟模式的运作,时间是由一个外部电阻和电容精确控制的。在一个稳定的操作中,振荡器、自由运行频率和责任周期都是由两个外部电阻和一个电容精确控制的。电路可以被下降的波形触发与重置。   将555电路的6,7脚并接起来接在定时电容C上,用2脚作输入就成为脉冲启动型单稳电路。电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启
[电源管理]
一种基于<font color='red'>555</font><font color='red'>时</font><font color='red'>基</font><font color='red'>芯片</font>的<font color='red'>高频</font><font color='red'>逆变电源</font>的设计与实现
基于SG3525A和IR2110的高频逆变电源设计
引言 随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。 本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT模块方案实现高频逆变电源。另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。 SG3525A性能和结构 SG3525A是电压型PWM集成控制器,外接元 器件少,性能好,包括开关稳压所需的全部控制电路。其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动 信号等功能
[电源管理]
小CPLD有大智慧 灵活应用在高频逆变电源
航空配电系统所用115V/400Hz电源一般是由直流逆变所得,主要供军用飞机、雷达等设备使用。逆变电源中的能量转换过程是,直流电通过逆变电路变换成高频脉冲电压,经滤波电路形成正弦波。近来,高频链逆变技术引起了人们越来越浓的研究兴趣。高频链逆变技术用高频变压器来代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。高频链逆变技术是由Mr.Espelage于1977年提出的,它与常规的逆变技术最大的不同在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。 传统的高频链逆变器由常规数字电路构成,存在设计复杂、抗干扰能力差等缺点。为了解决该问题,本文采用复杂可编程逻辑器件(CPLD)来实现控制电路的设计。CP
[电源管理]
小CPLD有大智慧 灵活应用在<font color='red'>高频</font>链<font color='red'>逆变电源</font>中
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved