基于SG3525A和IR2110的高频逆变电源设计

最新更新时间:2006-12-13来源: 电子设计应用关键字:PWM  功率  电压  频率 手机看文章 扫描二维码
随时随地手机看文章
引言

随着PWM技术在变频、逆变频等领域的运用越来越广泛,以及IGBT、PowerMOSFET等功率性开关器件的快速发展,使得PWM控制的高压大功率电源向着小型化、高频化、智能化、高效率方向发展。

本文采用电压脉宽型PWM控制芯片SG3525A,以及高压悬浮驱动器IR2110,用功率开关器件IGBT模块方案实现高频逆变电源。另外,用单片机控制技术对此电源进行控制,使整个系统结构简单,并实现了系统的数字智能化。

SG3525A性能和结构

SG3525A是电压型PWM集成控制器,外接元 器件少,性能好,包括开关稳压所需的全部控制电路。其主要特性包括:外同步、软启动功能;死区调节、欠压锁定功能;误差放大以及关闭输出驱动 信号等功能;输出级采用推挽式电路结构,关断速度快,输出电流±400mA;可提供精密度为5V±1%的基准电压;开关频率范围100Hz~400KHz。
其内部结构主要包括基准电压源、欠压锁定电路、锯齿波振荡器、误差放大器等,如图1所示。


图1 SG3525A内部框图及引脚功能


IR2110性能和结构

IR2110是美国IR公司生产的高压、高速PMOSFET和IGBT的理想驱动器。该芯片采用HVIC和闩锁抗干扰制造工艺,集成DIP、SOIC封装。其主要特性包括:悬浮通道电源采用自举电路,其电压最高可达500V;功率器件栅极驱动电压范围10V~20V;输出电流峰值为2A; 逻辑电源范围5V~20V,而且逻辑电源地和功率地之间允许+5V的偏移量;带有下拉电阻的COMS施密特输入端,可以方便地与LSTTL和CMOS电平匹配;独立的低端和高端输入通道,具有欠电压同时锁定两通道功能; 两通道的匹配延时为10ns;开关通断延时小,分别为120ns和90ns;工作频率达500kHz。
其内部结构主要包括逻辑输入,电平转换及输出保护等,如图2所示。


图2 IR2110内部框图及引脚功能

设计原理

高压侧悬浮驱动的自举原理

IR2110用于驱动半桥的电路如图3所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间,C1已充到足够的电压VC1≈VCC。当HIN为高电平时,VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1、Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅极电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1、S2给C1充电,迅速为C1补充能量。如此循环反复。


图3 驱动半桥自举电路


自举元件设计

自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则对其进行调整,使电路工作在最佳状态。

在工程应用中,取自举电容C1>2Qg/(VCC-10-1.5)。式中,Qg为IGBT门极提供的栅电荷。假定自举电容充电路径上有1.5V的压降(包括VD1的正向压降),则在器件开通后,自举电容两端电压比器件充分导通所需要的电压(10V)要高。

同时,在选择自举电容大小时,应综合考虑悬浮驱动的最宽导通时间ton(max)和最窄导通时间ton(min)。导通时间既不能太大影响窄脉冲的驱动性能,也不能太小而影响宽脉冲的驱动要求。根据功率器件的工作频率、开关速度、门极特性对导通时间进行选择,估算后经调试而定。

VD1主要用于阻断直流干线上的高压,其承受的电流是栅极电荷与开关频率之积。为了减少电荷损失,应选择反向漏电流小的二极管。

运用SG3525A和IR2110构成的高频逆变主电路图

高频逆变主电路如图4所示,逆变高压电路由全桥驱动组成。功率开关Q1~Q4采用IGBT模块。逆变主电路把直流电压V1转换为20kHz的高频矩形波交流电压送到高频高压变压器T1,经升压整流滤波后提供给负载供电。电路通过控制PWM1和PWM2的占空比,来得到脉宽可调的矩形波交流电压。VF为高压采样端反馈到控制系统的电压。


图 4 高压逆变主电路图


单片机组成的控制系统

图5所示为完整的高压逆变电源系统框图,它主要包括主电路及控制电路两部分。主电路主要包括逆变器直流电源、IGBT桥式逆变器、保护电路、高频高压变压器、高频高压硅堆(高频整流器)等。控制电路主要包括电流、电压采样及其处理单元,PWM信号产生和驱动电路,单片机控制器,参数输入键盘及液晶显示,通信接口等部分。为了更好的解决系统的干扰、隔离、电磁兼容等问题,在控制部分和主电路采用光耦完全隔离。
此硬件系统配上软件系统,可使整个系统具有完整的人机界面和自诊断等智能化功能。


图5 单片机控制的逆变系统

结语

由PWM控制芯片SG3525A和高压驱动器IR2110组成的高频逆变电源,具有体积小、控制方便、电能利用效率高等优点。此系统目前已被用于医疗设备的高频电源。

参考文献
1 智能化高频开关电源设计[J]. 电力电子技术. 1996.30(3)
2 电子变压器手册. 辽宁科学技术出版社. 1998.8
3 LPC900系列Flash单片机应用技术. 北京航空航天大学出版社.2004.1

关键字:PWM  功率  电压  频率 编辑: 引用地址:基于SG3525A和IR2110的高频逆变电源设计

上一篇:用于ADSL2 芯片组的降压或升压变换电源
下一篇:数控直流电流源的设计与实现

推荐阅读最新更新时间:2023-10-18 14:33

功率LED可靠性试验项目
一般来说,led 的可靠性是以半衰期(即光输出量减少到最初值一半的时间)来表徵,大概在1万到10万小时之间LED的可靠性测试包括静电敏感度特性、寿命、环境特性等指标的测试。 静电敏感度特性是指LED能承受的静电放电电压。某些LED由于电阻率较高,且正负电极距离很短,若两端的静电电荷累积到一定值时,这一静电电压会击穿PN结,严重时可将PN结击穿导致LED失效,因此必须对LED的静电敏感度特性进行测试,获得LED的静电放电故障临界电压。目前一般采用人体模式、机器模式、器件充电模式来类比现实生活中的静电放电现象。 为了观察LED在长期连续使用情况下光性能的变化规律,需要对LED进行抽样试验,通过长期观察和统计获得LE
[电源管理]
使用频率域相位测量方法测量器件的电长度
时延特性是器件的重要指标之一,时延特性的精确测量一直是测量领域的热点和难点问题。本文首先提出了一种不同于以往文献的分类方法,将现有的时延测量方法分为时域测量方法和频率域测量方法,并围绕两类方法的特点进行了相关的讨论。 01 时域法测量器件的电长度,矢量网络分析仪仍然进行频率扫描测量,并将频率扫描测量进行傅立叶逆变换,从而得到时间响应测量结果。 以上示例为一端开路的电缆线的频率域与时间域测量显示。频率域显示为幅度参数,其中曲线的波动是由多次反射造成的,这一点可以在右边的时域显示中清楚地看到, ω=2πf,其中S(ω)为矢量网络分析仪频率域测量参数。根据S参数的定义,S=b/a,在归一化校准情况下,我们可以认为a=1,即激
[测试测量]
使用<font color='red'>频率</font>域相位测量方法测量器件的电长度
物联网系统需要高集成度和小尺寸功率转换器
ADI公司Tony Armstrong 在功率谱的中低端存在一些不太大的功率转换要求,这在物联网(IoT)设备之类的应用中很常见。这些应用需要使用能够处理适度电流水平的功率转换IC。电流通常在数百毫安范围,但如果板载功率放大器为了传输数据或视频而存在峰值功率需求,那么电流量可能更高。因此,随着支持众多物联网器件的无线传感器的激增,业界对专门用于空间和散热受限器件的小型、紧凑、高效功率转换器的需求在不断增加。 然而,与其他很多应用不同,许多工业和医疗产品对可靠性、尺寸和稳健性通常有着更高的标准。正如大家所料,相当部分的设计负担落在了功率系统及其相关支持器件上。工业甚至医疗物联网产品必须正常运行并在多个电源(如交流电源插座和备
[电源管理]
物联网系统需要高集成度和小尺寸<font color='red'>功率</font>转换器
3. avr定时器/计数器0 --TC0 --相位修正PWM模式
相位修正PWM 模式(WGM01:0 = 1) 为用户提供了一个获得高精度相位修正PWM 波形的方法。此模式基于双斜坡操作。计时器重复地从BOTTOM 计到MAX,然后又从MAX倒退回到BOTTOM。在一般的比较输出模式下,当计时器往MAX计数时若发生了TCNT0与OCR0的匹配,OC0将清零为低电平;而在计时器往BOTTOM计数时若发生了TCNT0与OCR0 的匹配, OC0 将置位为高电平。工作于反向输出比较时则正好相反。与单斜坡操作相比,双斜坡操作可获得的最大频率要小。但由于其对称的特性,十分适合于电机控制。相位修正PWM 模式的PWM 精度固定为8 比特。计时器不断地累加直到MAX,然后开始减计数。在一个定时器时钟周期里
[单片机]
提高取光效率降热阻功率型LED封装技术
  超高亮度 LED 的应用面不断扩大,首先进入特种 照明 的市场领域,并向普通照明市场迈进。由于 LED芯片 输入功率的不断提高,对这些功率型LED的封装技术提出了更高的要求。功率型 LED封装 技术主要应满足以下两点要求:一是封装结构要有高的取光效率,其二是热阻要尽可能低,这样才能保证功率LED的光电性能和可靠性。   半导体LED若要作为照明光源,常规产品的光通量与白炽灯和荧光灯等通用性光源相比,距离甚远。因此,LED要在照明领域发展,关键是要将其发光效率、光通量提高至现有照明光源的等级。功率型LED所用的外延材料采用 MOCVD 的外延生长技术和多量子阱结构,虽然其内量子效率还需进一步提高,但
[电源管理]
提高取光效率降热阻<font color='red'>功率</font>型LED封装技术
安森美应用于白家电的变频器智能功率模块技术及方案
由于世界各国不断关注节能问题,使节能型消费类产品的需求持续上升,尤其是电冰箱、洗衣机和空调等白家电产品。除了节能,白家电设计的挑战包括尺寸、散热、可靠性、噪声及外观设计等。如今,在白家电设计中具有显著节能、低噪声和优异变速性能等特性的无刷直流(BLDC)电机(或称“马达”)应用越来越广泛。据统计,高档电冰箱中可能会使用5个或以上电机,空调的室外机及室内机各使用2个,洗衣机/烘干机、洗碗机等通常也会使用2个电机,这就需要高能效的电机驱动/控制方案。 变频器技术的开发旨在高能效地驱动用于工业及家用电器的电机。此技术要求像绝缘门双极晶体管(IGBT)、快速恢复二极管(FRD)这类的功率器件,以及控制IC和无源元件。智能功率模块(IP
[嵌入式]
功率半导体 将迎来爆发之年
按器件结构划分,功率半导体可分为功率集成电路与功率分立器件两类。功率半导体与半导体芯片一样具有重要价值,在国民经济和社会生活中具有不可替代的关键作用。据国际权威机构预测,2011年功率半导体在中国市场的销售量将占全球市场的50%,每年接近200亿美元,中国不久就将成为全球第一大功率半导体市场。然而,目前我国功率半导体企业无生产条件还是产品,大都仍停留在国外上世纪七十年代的水平,国内市场所需功率半导体约有90%仍然依赖进口,其余仅约10%的低档产品才是由本土企业生产制造。2008年,是全体国人翘首企盼的奥运年,而奥运商机也为电子产业带来前所未有的良好发展机遇,因此,国内功率半导体生产企业更应抓住这难得一遇的发展契机,开创中国功率半导体
[新品]
无变压器的大功率UPS设计
  自从小功率UPS问世以来,无变压器UPS设计经历了20余年的发展。如今30kVA以下的UPS绝大多数都是无变压器的,这意味着UPS并不一定需要市电频率(工频)的磁性部件(变压器或电感)。这种无变压器设计的趋势在向着大功率段发展,因为工频磁性部件是原材料和劳动力密集型工业产品,而高频电力电子设备是技术密集型产品。   一般来说,技术发展成熟时可以提高用户价值而不必以牺牲可靠性为代价。一旦实现,技术密集型的设计就成为首选的领先方案, 开关电源 和个人电脑的发展已经证明了这一点。   对于30~200kVA的大功率UPS,目前多家厂商已经有无变压器设计的成熟产品。在过去十年间,大功率的绝缘栅型双极晶体管(IGBT)已经发展得非常成熟
[电源管理]
无变压器的大<font color='red'>功率</font>UPS设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved