详解开关稳压器设计的PCB布局布线

最新更新时间:2014-06-20来源: 互联网关键字:开关稳压器  PCB布局 手机看文章 扫描二维码
随时随地手机看文章

开关模式电源用于将一个电压转换为另一个电压。这种电源的效率通常很高,因此,在许多应用中,它取代了线性稳压器。

  开关频率与开关转换

  开关模式电源以一定的开关频率工作。开关频率既可以是固定的(例如在PWM型控制中),也可以根据某些因素而变化(例如在PFM或迟滞型控制中)。无论何种情况,开关模式电源的工作原理,都在于它有一定的开启时间Ton和一定的关闭时间Toff.一个50%占空比的典型开关周期。这意味着,在完整周期T的50%时间里,转换器中有某一电流;在另外50%时间里,转换器中有不同的电流。

  当我们考虑系统噪声时,实际的开关频率(换言之,周期长度T)并不是很重要。如果它在系统的敏感信号频率范围内,开关频率或其谐波可能会影响系统。但一般而言,开关频率并不是影响系统的最大因素。

  在开关模式电源中,真正重要的是开关转换的速度。我们可以看到开关转换在时间标度上的放大图。在周期T为2us的时间标度上,对于500kHz PWM开关频率,转换看起来像是一条垂直线。但放大后,我们可以看到,开关转换通常需要30到90ns的时间。

  为什么良好的PCB布局布线非常重要?

  每2.5cm PCB走线具有大约20nH的走线电感。确切的电感值取决于走线的厚度、宽度和几何形状,但根据经验,一般取20nH/2.5cm切实可行。假设一个降压稳压器提供5A的输出电流,我们将会看到电流从0A切换到5A.当开关电流很大且开关转换时间很短时,我们可以利用下面的公式,计算微小的走线电感会产生多大的电压偏移:

  假设走线长2.5cm(20nH),输出电流为5A(降压稳压器中的5A开关电流),MOSFET功率开关的转换时间为30ns,那么电压偏移将是3.33V.

  由此可见,仅仅2.5cm的走线电感就能产生相当大的电压偏移。这种偏移甚至常常导致开关模式电源完全失效。将输入电容放在离开关稳压器输入引脚几厘米的地方,通常就会导致开关电源不能工作。在布局布线不当的电路板上,如果开关电源仍能工作,它将产生非常大的电磁干扰(EMI)。

  在上面的公式中,我们唯一能改变的参数是走线电感。我们可以使走线尽可能短,从而降低走线电感。较厚的铜线也有助于降低电感。由于负载所需的功率固定,因此我们无法改变电流参数。对于转换时间而言,我们可以改变,但一般不想改变。减慢转换时间可以降低产生的电压偏移,从而降低EMI,但是开关损耗却会提高,我们将不得不以较低的开关频率并利用昂贵而庞大的电源器件工作。

  找到交流电流走线

  在开关模式电源的PCB布局布线中,最重要的准则是以某种方式使交流走线尽可能短。如果能认真遵守这一准则,良好的电路板布局布线可以说已经成功了80%.为了找到这些在很短的时间(转换时间)内将电流从"满电流"变为"无电流"的交流走线,我们将原理图绘制了三次。它是一个简单的降压型开关模式电源。在顶部的原理图中,我们用虚线画出了开启时间内电流的流动。在中间的原理图中,我们用虚线画出了关闭时间内电流的流动。底部的原理图特别值得注意。这里,我们画出了电流从开启时间变为关闭时间的所有走线。

  通过这种方法,我们可以轻松找到任何开关模式电源拓扑结构的交流电流走线。

  在评估现有的电路板布局布线时,一个好的办法是将其打印在纸上,并放上一张透明的塑料板,然后用不同颜色的笔,画出开启时间和关闭时间内的电流流向及相应的交流走线。虽然我们倾向于认为,能够在头脑中完成这一相对简单的工作,但在思维过程中,我们常常会犯一些小错误,因此,强烈建议在纸上绘出走线。

  实现良好的PCB布局布线

  降压稳压器的交流走线。必须注意,某些接地走线也是交流走线,同样需要保持尽可能短。此外,对于这些交流电流路径,建议不要使用任何过孔,因为过孔的电感也相当高。对于这一规则,仅有非常少的例外情况。如果交流路径不使用过孔,将实际导致比过孔本身更大的走线电感,那么建议使用过孔。多个过孔并联优于仅使用单个过孔。

  采用ADI公司ADP2300降压稳压器的电路板的布局布线示例。我们检查一下,图中的交流走线是否是按绝对最短的路径布设。

  连接A是按照尽可能短的路径布设,因为C2的高侧连接能够以最短的走线连接到开关MOSFET(ADP2300的引脚5,即Vin引脚)。

  连接B是引脚6(SW引脚)与二极管D1的阴极侧之间的走线。我们同样看到该走线尽可能短,以降低走线电感。

  连接C是二极管D1的阳极与C2的接地连接之间的走线。这两个器件的焊盘彼此相邻,具有最低的走线电感。此外,这也有利于该交流电流不经过安静的接地层。接地层应仅用作基准电压,最好没有电流(特别是没有交流电流)流过接地层。C2旁边的过孔将PCB顶层的接地区域连接到底层的地,但没有交流电流流经这些过孔。  电感的特殊考虑

  在EMI方面,我们也必须考虑电感。实际器件并不像许多人认为的那样对称。电感有一个磁芯,磁芯周围绕着电线。绕组总有一个起始端和一个结束端。起始端连接到电感的内绕组,结束端从电感的外绕组接出。绕组的起始端通常在器件上标有一个圆点。将起始端连接到高噪声开关节点,将结束端连接到安静的电压非常重要。对于降压稳压器,安静的电压就是输出电压。这样,外绕组上的固定电压,可以在电气上屏蔽内绕组上的交流开关节点电压,从而电源的EMI将会较低。

  顺便提一下,所谓的屏蔽电感也是如此。具有一定磁导率的屏蔽电感的外部,确实使用了某种屏蔽材料,该材料会收紧封装侧的大部分磁力线。然而,这种材料只能抑制磁场,而不能抑制电场。外绕组上的交流电压主要是电气或容性耦合引起的问题,屏蔽电感的屏蔽材料没有抑制此类耦合。因此,屏蔽电感也应放在电路板上,以便将高噪声开关节点连接到绕组起始端,从而将EMI降到最低。

  开关模式电源良好电路板布局布线的基础

  工程课程一般不会教授如何实现良好的电路板布局布线。高频RF类课程会研究走线阻抗的重要性,但需要自行构建系统电源的工程师,通常不会将电源视为高频系统,而忽视了电路板布局布线的重要性。电路板布局布线不当引起的大多数问题,都可以归结为未控制交流电流走线尽可能短并且紧凑。了解本文所述电路板布局布线准则背后的理由并严格遵守,将能够把开关模式电源的任何PCB相关问题降到最小。

关键字:开关稳压器  PCB布局 编辑:探路者 引用地址:详解开关稳压器设计的PCB布局布线

上一篇:基于漏极导通区特性来理解MOSFET的开关过程
下一篇:太阳能逆变器中IGBT和MOSFET技术解析

推荐阅读最新更新时间:2023-10-12 22:41

Intersil推出新的高效升降压/升压开关稳压器
    具有业内领先封装设计的ISL911xx系列开关稳压器可防止移动设备中可能产生的过热、电源抖动和噪声问题,帮助实现最佳用户体验。       美国加州、MILPITAS --- 2014年4月10日—创新电源管理与精密模拟解决方案的领先供应商Intersil公司(纳斯达克全球交易代码:ISIL)今天宣布,推出业内首个采用极小集成式CSP封装的大电流升降压和升压开关稳压器产品系列--- ISL911XX,从而使在很小封装中提升大电流的高效率设计成为可能。Intersil通过推出ISL91110、ISL91108和ISL91117电源管理解决方案扩大了其在面向电池供电移动设备及消费电子的DC-DC开关稳压器技术领域的领先地
[电源管理]
利用集成化开关稳压器简化电源设计
一提到电源设计,大多数工程师都会感到挠头,他们往往会问“从哪里入手呢”。首先先必须确定电源的拓扑,包括降压、升压、flyback、半桥和全桥等,还要确定控制方案、电压模式、电流模式、固定导通时间等。其他问题还包括:(1)电源的频率特性如何?这将决定应该使用何种电感和电容,以满足输出纹波和负载暂态响应的要求。(2)为了确保整个电路在各种负载、温度条件下的稳定性,应该采用哪种补偿方案呢?(3)选择“合适的” MOSFET 也并非小事一桩。驱动电路能否控制MOS FET 的栅电容?寄生电容和Rds(on)又将如何影响总功耗? 但需要回答的问题还不仅仅局限于此。PCB设计工程师可能会来告诉你,PCB板上没有足够的空间
[工业控制]
利用集成化<font color='red'>开关稳压器</font>简化电源设计
K78XXT-500系列高效率贴片型开关稳压器
  MORNSUN(金升阳)在新一代高效开关式三端K78xx-500产品线基础上努力优化突破,率先推出国内首款SMD塑封表贴型高效开关稳压器K78xxT-500系列,实现了K78系列的SMD表贴化,满足了客户布板、体积方面的难题,将帮助工控、电力、仪表等多个行业应用客户实现真正的生产自动化,适用于各类手持设备。   该系列产品为非隔离稳压单输出贴片型DC-DC电源,具有超宽输入电压范围(4.5—28V);输出电压有3.3V,5V, 12V,15V等多种规格;额定输出电流0.5A,效率高达96%,无需外接任何散热器;功率密度大,超小体积,产品尺寸仅为15.24*8.5*7.25mm;SMD封装,输出短路保护、过热保护、输出可调、远程开
[电源管理]
布线指南:提高汽车电源性能、降低电磁辐射
使用高频 开关稳压器 时,好的 汽车电源 PCB 布线 可以提供更干净的输出,并且简化 EMI 测试中的调试工作。本文以 MAX16903/MAX16904 开关稳压器设计为例,介绍如何布线以获得最佳的性能,并降低辐射。 引言 使用高频开关稳压器(如 MAX16903/MAX16904)时,好的汽车电源 PCB 布线可以提供更干净的输出,并且简化电磁干扰(EMI)测试中的调试工作。本文以 MAX16903/MAX16904 开关稳压器设计为例,介绍优化系统性能的布板原则。 布线通用规则 将输入电容 C3、电感 L1 和输出电容 C2 形成的环路面积保持在最小。 BIAS 输出电容(C4)尽可能靠近第 13
[汽车电子]
布线指南:提高汽车电源性能、降低电磁辐射
如何调整PCB布局?降低超级结MOSFET辐射、提高效率
基于最近的趋势,提高效率成为关键目标,为了获得更好的EMI而采用慢开关器件的权衡并不值得。超级结可在平面MOSFET难以胜任的应用中提高效率。与传统平面MOSFET技术相比,超级结MOSFET可显着降低导通电阻和寄生电容。 导通电阻的显着降低和寄生电容的降低虽然有助于提高效率,但也产生电压(dv/dt)和电流(di/dt)的快速开关转换,形成高频噪声和辐射EMI。   为驱动快速开关超级结MOSFET,必须了解封装和PCB布局寄生效应对开关性能的影响,以及为使用超级结所做的PCB布局调整。主要使用击穿电压为500-600V的超级结MOSFET。在这些电压额定值中,工业标准TO-220、TO-247、TO-3P和TO-263是应用
[电源管理]
如何调整<font color='red'>PCB布局</font>?降低超级结MOSFET辐射、提高效率
新型开关稳压器应对手持设备电源系统设计挑战
手持设备的设计人员面临的关键挑战是实现产品的高性能和低功耗。电池寿命对于手持设备是非常重要的指标,电源管理产品必须适应不断变化的设计需求,例如,更低的待机能耗、更高的效率、超薄厚度、超小PCB面积、更智能化的控制接口等。DC/DC开关稳压器是电源系统中的关键部件之一,稳压器必须保持恒定的电压,而且能够对输入电压的变化以及负载电流的变化迅速作出响应。电容和电感是DC/DC中最基本的能量转换器件,基于电容的电荷泵和基于电感的DC/DC各有优势和缺点,都有用武之地。   电荷泵DC/DC器件尺寸小、厚度薄,加上此种结构EMI干扰小,因而在很多设计中深受工程师青睐。圣邦微电子的SGM3110
[电源管理]
线性稳压器与开关稳压器的对比分析
一、线性稳压器和开关稳压器的不同概念 1.什么是线性稳压器? 线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP.这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。 2.什么是开关
[电源管理]
线性稳压器与<font color='red'>开关稳压器</font>的对比分析
安森美半导体用于低功率应用的高能效AC-DC开关稳压器方案
近年来,世界各国政府为了因应全球气候变暖,纷纷制定更严格的高能效法规与标准,提升电源能效,降低能耗,以期减轻对环境的压力。安森美半导体身为全球领先的半导体供应商,积极推动高能效创新,提供宽广阵容的高能效电源产品及方案,涵盖从高集成度功率因数控制器、AC-DC控制器、DC-DC控制器,到分立MOSFET、整流器、IGBT等,以及智能功率模块(IPM)和功率集成模块(PIM)等,用于计算机、消费(电视机、DVD、机顶盒、游戏机等)、白家电、电信、工业及LED照明等重点应用,符合或超越各种能效规范。 本文重点围绕市场上的低功率应用,如消费类电器/白家电辅助电源、待机隔离电源、电表/智能电表电源、辅助电源、调制解调器/路由器AC
[电源管理]
安森美半导体用于低功率应用的高能效AC-DC<font color='red'>开关稳压器</font>方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved