简洁而不简单 BUCK\BOOST原理讲解

最新更新时间:2014-07-22来源: 电源网 关键字:BUCK  BOOST 手机看文章 扫描二维码
随时随地手机看文章

升压和降压电路,就是指电力电子设计当中常说的BUCK/BOOST电路。这两种电路经常一起出现在电路设计当中,BUCK电路指输出小于电压的单管不隔离直流变换,BOOST指输出电压高于输入电压的单管不隔离直流变换。作为最常见也比较基础的两种电路,本篇文章就主要对这两种电路的原理进行了讲解。

首先让我们从BUCK变换器的概念开始讲起,Buck变换器也称降压式变换器,是一种输出电压小于输进电压的单管不隔离直流变换器。

图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulatiON脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。

开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不答应在Dy=1的状态下工作。电感Lf在输进侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式。

Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输进电压的单管不隔离直流变换器,但其输出电压的极性与输进电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。

Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点:

① 非常低的输进输出电压差② 非常小的内部损耗③ 很小的温度漂移④ 很高的输出电压稳定度⑤ 很好的负载和线性调整率⑥ 很宽的工作温度范围⑦ 较宽的输进电压范围⑧ 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:

(1)Buck电路——降压斩波器,其输出均匀电压 U0小于输进电压Ui,极性相同。

(2)Boost电路——升压斩波器,其输出均匀电压 U0大于输进电压Ui,极性相同。

(3)Buck-Boost电路——降压或升压斩波器,其 输出均匀电压U0大于或小于输进电压Ui,极性相反,电感传输。

(4)Cuk电路——降压或升压斩波器,其输出均匀电 压U0大于或小于输进电压Ui,极性相反,电容传输。

DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*DBOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D)BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D)D为充电占空比,既MOSFET导通时间。0

开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。

因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应正确丈量或计算用电设备的最大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为: Is=KIf 式中:Is—开关电源的额定输出电流; If—用电设备的最大吸收电流; K—裕量系数,一般取1。5~1。8;电容式开关电源它们能使输进电压升高或降低,也可以用于产生负电压。其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输进电压以一定因数(0。5,2或3)倍增或降低,从而得到所需要的输出电压。这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰)首先贮存能量,然后以受控方式开释能量,以获得所需的输出电压。

这两种电路看似简单,但是实际分析起来还是能够分析出很多细枝末节的知识。只有熟练掌握了这些基础知识,才能更加熟练、快速的完成电路设计。可见,在学习的过程当中,切忌急功近利,稳扎稳打才是最稳妥也是最能收获知识的学习方式。

关键字:BUCK  BOOST 编辑:探路者 引用地址:简洁而不简单 BUCK\BOOST原理讲解

上一篇:过载测试——电源测试您所忽视的问题(3)
下一篇:从双管正激优与劣看电源节能大趋势

推荐阅读最新更新时间:2023-10-12 22:43

Turbo-boost充电器可为CPU涡轮加速模式提供支持
引言 为了不断提高 CPU 的动态性能,让笔记本电脑拥有高速处理复杂多任务的能力,我们首先必须短时间提高 CPU 时钟频率,并充分利用其散热能力。但是,这样做会使系统要求的总功耗超出电源(例如:AC 适配器等)所供功率,从而导致适配器崩溃。一种可能的解决方案是提高适配器的额定功率,但成本也随之增加。本文介绍的涡轮加速升压 (turbo boost) 充电器,允许适配器和电池同时为系统供电,以满足笔记本电脑在 CPU 内核加速模式下工作时出现的猝发、超高功率需求。   在传统笔记本电脑系统中,使用一个 AC 适配器供电,并利用系统不需要的功率为电池充电。AC 适配器不可用时,通过开启 S1 开关(请参见图 1)让电池为系统
[嵌入式]
基于Buck电路的开关电源纹波的计算和抑制
开关电源具有效率高、输出电压可调范围大、损耗小、体积小、重量轻等特点,得到了广泛的应用。由于开关电源体积小,输出直流电压的纹波含量比同功率线性电源大,如何降低纹波含量成为开关电源应用及制造技术中的一个关键技术难点。本文通过对Buck电路的分析,找出对纹波的产生有影响的因素及改善的措施。 1 纹波的定义 Buck类型开关电源的拓扑结构如图1所示。 通常情况下,开关电源首先把电网电压全波整流变为直流电,经高频开关变换由变压器降压,经高频二极管整流滤波后,得到稳定的直流电压输出。其自身含有大量的谐波干扰,同时由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰都形成了电磁干扰源,这些尖峰就是输出纹波。输出纹波主要来源于4
[电源管理]
基于<font color='red'>Buck</font>电路的开关电源纹波的计算和抑制
MAX8655同步PWM buck调节器
MAX8655同步PWM buck调节器工作于4.5V至25V输入电压范围,可产生0.7V至5.5V可调输出电压,提供高达25A的负载电流。内置功率MOSFET支持小外型设计,易于布线并降低了EMI。减小电路板寄生电感,可确保在高频工作时效率最高。   MAX8655采用峰值电流控制架构,可调节固定开关频率(200kHz至1MHz),支持外同步。利用电感的直流电阻提供MAX8655的限流功能,有助于提高效率;也可以使用外部检流电阻提高检测精度。折返式限流功能降低了严重过载或短路情况下的功耗。提供基准输入,作为高精度外部基准输入或用于DDR跟踪。   单调启动能够能够保证启动时安全进入预偏置输出,而传统的降压调节器在软启动期
[电源管理]
MAX8655同步PWM <font color='red'>buck</font>调节器
透析:Boost型功率因数校正器的电磁兼容
0、 引言  为了减少对交流电网的谐波污染,已经推出了一些限制 电流 谐波的标准,如IEC1000-3-2 ClassD标准,要求必须采取措施降低输入电网的电流谐波含量,提高功率因数。  传统的 二极管 和 电容 对输入信号进行整流滤波时,只在输入交流 电压 的峰值部分才有输入电流,导致产生了很大的电流谐波含量,严重干扰了电网,远不能达到标准要求。为了使输入电流谐波满足要求,必须加功率因数校正(PFC)。比较成熟且应用广泛的是两级方案,它们有各自的功率器件和控制 电路 。PFC级使线电流跟随线电压,使线电流正弦化,很容易达到高功率因数,减少谐波含量。尤其是近年来,随着 电力 电子 技术的迅猛发
[电源管理]
透析:<font color='red'>Boost</font>型功率因数校正器的电磁兼容
三种不同的位置,如何选择一个正确的
相对于 电压 模式的 Buck 变换器,尽管电流模式的 Buck 变换器需要精密的电流检测电阻并且这会影响到系统的效率和成本,但电流模式的 Buck 变换器仍然获得更为广泛的应用,这是因为其具有以下的优点:①反馈内在 cycle-by-cycle峰值限流;②电感电流真正的软起动特性;③精确的电流检测环;④输出电压与输入电压无关,一阶的系统容易设计反馈环,系统的稳定余量大稳定性好,对于所有陶冶 电容 容易补偿;⑤易实现多相位/多变换器的 并联 操作得到更大输出电流;⑥允许大的输入电压纹波从而减小输入滤波电容。对于电流模式的 Buck 变换器,电流的取样电阻有三种不同的放置方式:①放置在输入回路即与高端主开关管相 串联
[电源管理]
三种不同的位置,如何选择一个正确的
英飞凌推出EiceDRIVER™SIL和EiceDRIVER™Boost,用于汽车级IGBT驱动
2013年5月27日,德国纽必堡讯——英飞凌科技股份有限公司 (FSE:IFX / OTC QX:IFNNY) 今天推出新一代应用于新能源汽车的高压IGBT门级驱动器。有了专为混合动力/电动汽车 (HEV) 的主逆变器而设计的全新EiceDRIVER™ SIL和EiceDRIVER™ Boost驱动器,汽车系统供应商便能够更轻松地设计出更具成本效益的HEV电力传动传动子系统,该系统完全符合ASIL C/D功能安全要求标准 (ISO 26262)。新的EiceDRIVER的目标应用是使用400V、600V和 1200V汽车级IGBT、功率高达120kW的HEV逆变器。EiceDRIVER SIL和EiceDRIVER Boost的前
[汽车电子]
“Quick Buck Booster”技术让汽车摆脱怠速启停中的高风险
当遇到红灯或堵车时,驾驶员会放慢车速甚至熄火,当重新上路时,起动机会快速启动发动机,这就是“怠速启停”的过程。这项技术具有几大优势:第一,消除怠速空转,省下怠速时间内消耗的油料,可以节能;第二,发动机自动熄火后,尾气排放为零,非常环保;第三,提高发动机动力输出,延长发动机寿命。因此,近些年配备怠速启停控制系统的车辆在逐年增加。   但是在怠速启停时,车辆会在瞬间承受较大负载,因此进入电池电压下降的启动状态,一般采用降压型DC/DC转换器,当电压降低到车载ECU的正常工作电压后会造成ECU停止,从而导致仪表盘停止,这给车辆行驶带来巨大的安全风险。为了向ECU供应稳定的电源,需要采用升降压转换器,其优点是不管电池电压高于还是低于ECU
[嵌入式]
电压型滞环控制的同步Buck变换器
摘要:阐述了电压型滞环控制和同步Buck变换器的基本原理,并对两项技术结合起来的电压型滞环控制的同步Buck变换器进行了详细的分析。对电压型滞环控制与传统电压型控制在负载瞬态变化时的输出电压进行了仿真比较。结果表明该控制方案所具有对负载瞬态变化有近乎同步响应的优点。在实际应用中采用TI公司的TPS5210芯片实现了滞环控制,验证了仿真结果。最后简要给出了对电压型滞环控制的开关频率进行估算的方法。 关键词:电压型滞环控制;同步Buck变换器;滞环宽度 引言 降低运行电压,获得高性能和高功率密度的下一代微处理器,对电源设计提出了更高的要求。在提高微处理器的速度和积成密度的同时降低功率损耗,所需的运行电压降到1V以下, 从而引起电源电流增
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved