复杂电源的时序控制解决方案

最新更新时间:2014-08-08来源: 中国电力电子产业网关键字:复杂电源  时序控制 手机看文章 扫描二维码
随时随地手机看文章

简介

  电源时序控制是微控制器、FPGA、DSP、ADC和其他需要多个电压轨供电的器件所必需的一项功能。这些应用通常需要在数字I/O轨上电前对内核和模拟模块上电,但有些设计可能需要采用其他序列。无论如何,正确的上电和关断时序控制可以防止闩锁引发的即时损坏和ESD造成的长期损害。此外,电源时序控制可以错开上电过程中的浪涌电流,这种技术对于采用限流电源供电的应用十分有用。

  本文讨论使用分立器件进行电源时序控制的优缺点,同时介绍利用ADP5134内部精密使能引脚实现时序控制的一种简单而有效的方法ADP5134内置2个1.2-A 降压调节器与2个300-mA LDO。同时,本文还列出一系列IC,可用于要求更高精度、更灵活时序控制的应用。

  图1 所示为一种要求多个供电轨的应用。这些供电轨为内核电源(VCCINT)、I/O 电源(VCCO)、辅助电源(VCCAUX)和系统存储器电源。

  

  图1. 处理器和FPGA 的典型供电方法

  举例来说,Xilinx Spartan-3AFPGA 具有一个内置上电复位电路,可确保在所有电源均达到其阈值后才允许对器件进行配置。这样有助于降低电源时序控制要求,但为了实现最小浪涌电流电平并遵循连接至FPGA 的电路时序控制要求,供电轨应当按以下序列上电VCC_INT → VCC_AUX→ VCCO.请注意:有些应用要求采用特定序列,因此,务必阅读数据手册的电源要求部分。

  使用无源延迟网络简化电源时序控制

  实现电源时序控制的一种简单的方法就是利用电阻、电容、二极管等无源元件,延迟进入调节器使能引脚的信号,如图2 所示。当开关闭合时,D1导电,而D2仍保持断开。电容C1充电,而EN2处的电压根据R1和C1确定的速率上升。当开关断开时,电容C1通过R2、D2和RPULL向地放电。EN2处的电压以R2、RPULL和C2确定的速率下降。更改R1和R2的值会改变充放电时间,从而设置调节器的开启和关闭时间。

  

  图2. 利用电阻、电容和二极管实现电源时序控制的简单方法

  该方法可用于不要求采用精密时序控制的应用,以及只需延迟信号即可并可能只要求采用外部R和C的部分应用。对于标准调节器,采用这种方法的缺点在于,使能引脚的逻辑阈值可能因为电压和温度而存在很大的差异。此外,电压斜坡中的延迟取决于电阻和电容值及容差。典型的X5R电容在-55°C至 +85°C温度范围内的变化幅度约为±15%,由于直流偏置效应还会出现±10%的变化,从而使时序控制变得不精确,有时还会变得不可靠。

  精密使能轻松实现时序控制

  为了获得稳定的阈值电平以实现精密时序控制,大多数调节器都要求采用一个外部基准电压源.ADP5134通过集成精密基准电压源、大幅节省成本和PCB面积的方式解决了这个问题。每个调节器都有一个独立的使能引脚。当使能输入的电压升至 VIH_EN(最小值为0.9 V)以上时,器件退出关断模式,且管理模块开启,但不会激活调节器。将使能输入的电压与一个精密内部基准电压(典型值为0.97 V)相比较。一旦使能引脚的电压升至高于精密使能阈值,则调节器被激活,输出电压开始升高。 在输入电压和温度转折处,基准电压的变化幅度只有±3%。这一小范围变化可确保精密的时序控制,解决采用分立器件时遇到的各种问题。

  当使能输入的电压降至低于基准电压低80 mV(典型值)时,调节器停用。当所有使能输入上的电压都降至VIL_EN(最大值 为0.35 V)以下时,器件进入关断模式。在该模式下,功耗降至1 μA 以下。图3 和图4 展示了用于Buck1 的ADP5134 精密使能阈值在温度范围内的精度。

  

  图3. 温度范围内的精密使能导通阈值(10 个采样)

  

  图4. 温度范围内的精密使能关闭阈值(10 个采样)

  使用电阻分压器简化电源时序控制

  通过将衰减版本的调节器输出端连接至待上电的下一个调节器使能引脚,可对多通道电源进行时序控制,如图5 所示,其中,调节器按以下顺序开启或关Buck1 → Buck2 → LDO1 → LDO2。图6为EN1连接至VIN1后的上电序列。图7 所示为 EN1与VIN1断开后的关断序列。

  

  图5. 采用ADP5134 实现的简单时序控制

  

  图6. ADP5134 启动序列

  

  图7. ADP5134 关断序列

  序列器IC 提高时序精度

  在某些情况下,实现精密时序比降低PCB面积和成本更重要。 对于这些应用,可以使用电压监控和序列器IC,比如在电压和温度范围内,精度可达±0.8%的ADM1184四通道电压监控器。或者,对于要求更加精确的上电和关断序列控制的应用,可以使用带可编程时序控制的ADM1186四通道电压序列器和监控器。

  ADP5034四通道调节器集成了两个3-MHz、1200-mA降压调节器和两个300 mA LDO.典型的时序控制功能可以通过以下方式实现,采用ADM1184监控一个调节器的输出电压,并在被监测输出电压达到某个电平时,向下一个调节器的使能引脚提供一个逻辑高电平信号。这种方法(如图8 所示)可用于不具有精密使能功能的调节器。

  

  图8. 使用ADM1184四通道电压监控器对ADP5034四通道调节器实施时序控制

  结论

  使用ADP5134精密使能输入进行时序控制既简单又轻松,每个通道只需要两个外部电阻即可。而更加精密的时序控制则可以通过ADM1184或ADM1186电压监控器实现。

关键字:复杂电源  时序控制 编辑:探路者 引用地址:复杂电源的时序控制解决方案

上一篇:维修变频器常识:开关电源电路
下一篇:新型铝材立式氧化自动线整流电源系统

推荐阅读最新更新时间:2023-10-12 22:43

照明需求日渐复杂电源芯片遭遇技术挑战!
将如今的 便携式 消费类电子设备与几年以前的进行相比,你会明白为什么照明已成为主要的 电源管理 挑战。具有单个无源 LCD 面板 的手持设备正在迅速被淘汰。如今的设备都具备高性能、高分辨率、2.5~3英寸对角线彩色 显示屏 ,以支持涵盖从互联网接入和 移动 电视到视频回放的整个范围的应用。 典型的,这些显示屏需要4个或更多用于背光的 LED 和 驱动 器。许多手持设备(特别是翻盖式设计)都增加了一个较小的副显示屏,以 显示 时间、日期和连接性等基本信息。这些副显示屏通常比主显示屏需要多一到两个LED用于背光功能。 随着设计工程师发现时尚照明在产品差异化中的重要作用,如今的许多便携式电子设备都需要额外的 电源电路 来驱动辅助RGB
[电源管理]
混合信号IC──复杂电源管理组件的设计挑战及解决方案
        随着系统内电源数量的增多,为了确保其安全、经济、持续和正常的工作,对电源轨进行监测和控制变得非常重要,特别是在使用微处理器时。确定电压轨是否处于工作范围内,以及该电压相对于其它电压轨是否按照正确的时序上电或断电,这些对于系统执行的可靠性和安全性来说都是至关重要的。例如FPGA,在向组件提供5V I/O(输入/输出)电压之前,必须先施加3.3V的核心电压,并持续至少20ms,以避免组件上电时受到损坏。对于系统的可靠性来说,满足这样的时序要求就像要保证组件在规定的电源电压和温度范围内工作一样至关重要。         同时,电源轨数量也在显著增加。一些复杂的系统,如LAN(局域网络)交换机和移动电话基站,线路卡通常会
[电源管理]
混合信号IC──<font color='red'>复杂</font><font color='red'>电源</font>管理组件的设计挑战及解决方案
基于CPLD技术的数字时序控制电路设计
1、引言   六自由度电磁敏感定位系统作为一种新型的跟踪定位装置,可实时地确定目标的六个参数,已在机载火控系统(头盔瞄准具)、精密医疗器械、单兵作战模拟训练中获得广泛应用 。该跟踪系统由正弦信号发射电路、敏感信号接收电路组成的硬件和从敏感接收数据中求解目标参数的算法程序两部分组成,定位计算精度受制于上述两部分的误差。目前,在不考虑环境因素影响的情况下,算法误差已达到小于1毫弧的水平,因此,硬件电路的误差成为制约系统定位精度的主要因素。根据工作原理,该系统采取按时序依次激励发射天线,从而根据敏感天线接收信号组成接收矩阵计算目标参数。然而,作为时序控制电路的模拟器件,存在无法避免的温度漂移和时间漂移问题,从而大大影响了时序发射的
[工业控制]
基于CPLD技术的数字<font color='red'>时序控制</font>电路设计
ADIADM106610个电源监视和时序控制解决方案
    ADI公司的ADM1066是可配置的单片多种电源监视/定序器件,并集成了12位ADC和6个8位电压输出的DAC,所有电压在25度C的精度优于0.5%,主要用在中心办公系统,服务器/路由器,多电压系统线路卡,DSP/FPGA电压定序等.本文介绍了ADM1066主要特性,方框图, 应用框图以及ADM106x评估板主要特性,方框图和电路图,材料清单.     The ADM1066 Super Sequencer® is a configurable supervisory/ sequencing device that offers a single-chip solution for supply monitoring and
[电源管理]
ADIADM106610个<font color='red'>电源</font>监视和<font color='red'>时序控制</font>解决方案
高速嵌入式视频系统中SDRAM时序控制分析
在高速数字视频系统应用中,使用大容量存储器实现数据缓存是一个必不可少的环节。SDRAM就是经常用到的一种存储器。 但是,在主芯片与SDRAM之间产生的时序抖动问题阻碍了产品的大规模生产。在数字电视接收机的生产实际应用中,不同厂家的PCB板布线、PCB材料和时钟频率的不同,及SDRAM型号和器件一致性不同等原因,都会带来解码主芯片与SDRAM间访问时序的抖动问题。 本文利用C-NOVA公司数字电视MPEG-2解码芯片AVIA9700内置的SDRAM控制器所提供的时序补偿机制,设计了一个方便使用的内存时序测试软件工具,利用这个工具,开发测试人员可在以AVIA9700为解码器的数字电视接收机设计和生产中进行快速诊断,并解决SD
[应用]
复杂电源管理组件的设计挑战及解决方案
随着系统内电源数量的增多,为了确保其安全、经济、持续和正常的工作,对电源轨进行监测和控制变得非常重要,特别是在使用微处理器时。确定电压轨是否处于工作范围内,以及该电压相对于其它电压轨是否按照正确的时序上电或断电,这些对于系统执行的可靠性和安全性来说都是至关重要的。例如FPGA,在向组件提供5V I/O(输入/输出)电压之前,必须先施加3.3V的核心电压,并持续至少20ms,以避免组件上电时受到损坏。对于系统的可靠性来说,满足这样的时序要求就像要保证组件在规定的电源电压和温度范围内工作一样至关重要。   同时,电源轨数量也在显著增加。一些复杂的系统,如LAN(局域网络)交换机和移动电话基站,线路卡通常会包含10路或更多电压轨;即
[工业控制]
<font color='red'>复杂</font><font color='red'>电源</font>管理组件的设计挑战及解决方案
基于LabVIEW的多路时序控制脉冲发生器设计
  0 引 言   在过程控制和自动测量中,经常需要一些时序控制脉冲来触发和关闭不同的控制单元和功能部件的工作。时序脉冲信号的产生,传统上一般采用硬件方式实现,早期大多采用计数器和寄存器进行设计,近年普遍采用可编程逻辑器件(PFGA)或数字信号处理器(DSA)。采用硬件方式实现的时序脉冲信号发生器存在仪器功能单一,信号输出通道路数较少,参数调节不方便,仪器的升级换代困难等缺点;而采用基于LabVIEW的“虚拟仪器”概念设计制作的时序脉冲发生器却具有界面直观、功能多样、参数调节方便、容易升级换代等特点。   1 LabVIEW简介   实验室虚拟仪器集成环境(Laboratory Virtual Instrumen
[测试测量]
基于LabVIEW的多路<font color='red'>时序控制</font>脉冲发生器设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved